document.write( "Question 1156301: Let P(x)=x4 −2x3 −10x2 +6x+45
\n" ); document.write( "▪ Use the Rational Zero Theorem to list all the possible rational zeros. ▪ Then find all zeros exactly (rational, irrational, and imaginary).
\n" ); document.write( "Hint: Use the Rational Zero Theorem, a graphing calculator, and synthetic division if needed.
\n" ); document.write( "

Algebra.Com's Answer #778996 by ikleyn(52787)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Since the leading coefficient is 1, the Remainder theorem provides this list of possible zeros \r\n" );
document.write( "(all of them are divisors of the constant term 45, in this case)\r\n" );
document.write( "\r\n" );
document.write( "   +/-1, +/-3, +/-5, +/-9, +/-15, +/-45.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Next, the plot below\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    Plot y = \"x%5E4+-+2x%5E3+-+10x%5E2+%2B+6x+%2B+45\"\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "shows the root x= 3 of the multiplicity at least 2.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, I divide  \"x%5E4+-+2x%5E3+-+10x%5E2+%2B+6x+%2B+45\"  by  \"%28x-3%29%5E2\",  and I get the quotient  \"x%5E2+%2B+4x+%2B+5\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "This quotient is a quadratic polynomial with negative discriminant, so it has no real roots.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Therefore, factoring over real numbers is\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    \"x%5E4+-+2x%5E3+-+10x%5E2+%2B+6x+%2B+45\" = \"%28x-3%29%5E2%2A%28x%5E2+%2B+4x+%2B+5%29\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The quadratic polynomial  x^2 + 4x + 5  has no rational roots.\r\n" );
document.write( "\r\n" );
document.write( "It has no real roots, too, since its discriminant d = (-4)^2 - 4*1*5 = 16 - 20 = -4 is negative.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "It has two complex roots  \"%28-4+%2B-+sqrt%28-4%29%29%2F2\" = \"-2+%2B-+i\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "ANSWER.  The roots of the given polynomial are  x= 3  of the multiplicity  2  and \r\n" );
document.write( "\r\n" );
document.write( "         two complex roots  \"-2+%2B+i\"  and   \"-2+-+i\"  of the multiplicity 1 each.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );