document.write( "Question 1155976: Locate the critical points of the following function. Then use the second derivative test to determine whether they correspond to local maxima, local minima, or neither.
\n" ); document.write( "f(x)=-e^x(x-3)
\n" ); document.write( "

Algebra.Com's Answer #778670 by MathLover1(20850)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "\"f%28x%29=-e%5Ex%28x-3%29\"\r
\n" ); document.write( "\n" ); document.write( "Derivative:\r
\n" ); document.write( "\n" ); document.write( "\"d%2Fdx%28-e%5Ex+%28x+-+3%29%29+=+-e%5Ex+%28x+-+2%29\"\r
\n" ); document.write( "\n" ); document.write( "=> critical points: \r
\n" ); document.write( "\n" ); document.write( "\"-e%5Ex+%28x+-+2%29=0\" => only if \"%28x+-+2%29=0\" =>\"x=2\"\r
\n" ); document.write( "\n" ); document.write( "second derivative:\r
\n" ); document.write( "\n" ); document.write( "\"f\"'\"%28x%29+=+-e%5Ex+%28x+-+1%29\"..........now, plug the three critical number \"x=2\" into the second derivative \r
\n" ); document.write( "\n" ); document.write( "\"f\"'\"%28x%29+=+-e%5E2+%282+-+1%29\"\r
\n" ); document.write( "\n" ); document.write( "\"f\"'\"%28x%29+=+-e%5E2+%281%29\"\r
\n" ); document.write( "\n" ); document.write( "\"f\"'\"%28x%29+=+-e%5E2+\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "At \"2\", the second derivative is \"negative\" ( \"-e%5E2+\"). This tells you that \"f\" is concave down where \"x=2\", and therefore that there’s a local\"+max\" at \"+2\".\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"+graph%28+600%2C+600%2C+-10%2C+10%2C+-10%2C+10%2C+-e%5Ex%2A%28x-3%29%29+\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );