document.write( "Question 1155804: write the polynomial function of minimum degree in standard form that has zero -1 and 2i. Assume the leading coefficient is 1. \n" ); document.write( "
Algebra.Com's Answer #778461 by Boreal(15235)\"\" \"About 
You can put this solution on YOUR website!
-2i and +2i are roots, since complex roots are conjugate
\n" ); document.write( "-1 is other,
\n" ); document.write( "(x+1)
\n" ); document.write( "x=2i, x= -2i. (x^2+4)=0
\n" ); document.write( "(x+1)(x^2+4)
\n" ); document.write( "x^3+x^2+4x+4=0\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "also,
\n" ); document.write( "if first coefficient is 1 then
\n" ); document.write( "x=(1/2)(-b+/- sqrt(b^2-4ac)
\n" ); document.write( "the discriminate is -16 and b is 0
\n" ); document.write( "therefore -4ac=-16
\n" ); document.write( "a is 1, c=4
\n" ); document.write( "(x^2+4)\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );