document.write( "Question 1155652: SOLVE THE PROOF
\n" );
document.write( "P v Q, P → (T → S), P → T, S ↔ Q ├ S\r
\n" );
document.write( "\n" );
document.write( "1. P v Q ASSUMPTION
\n" );
document.write( "2. P → (T → S) ASSUMPTION
\n" );
document.write( "3. P → T ASSUMPTION
\n" );
document.write( "4. S ↔ Q ASSUMPTION\r
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "CONCLUSION- S
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #778361 by Edwin McCravy(20056)![]() ![]() You can put this solution on YOUR website! \r\n" ); document.write( "1. P v Q \r\n" ); document.write( "2. P → (T → S), \r\n" ); document.write( "3. P → T, \r\n" ); document.write( "4. S ↔ Q ├ S\r\n" ); document.write( "\r\n" ); document.write( " |5. ~S Assumption for Indirect Proof\r\n" ); document.write( " |6. (S → Q) & (Q → S) 4, Material Equivalence\r\n" ); document.write( " |7. (Q → S) & (S → Q) 6, Commutation\r\n" ); document.write( " |8. Q → S 7, Simplification\r\n" ); document.write( " |9. ~Q 8,5, Modus Tollens\r\n" ); document.write( " |10. Q v P 1, Commutation\r\n" ); document.write( " |11. P 10,9, Disjunctive Syllogism\r\n" ); document.write( " |12. T 3,11, Modus Ponens \r\n" ); document.write( " |13. T → S 2,11, Modus Ponens\r\n" ); document.write( " |14. S 13,12, Modus Ponens\r\n" ); document.write( " |15. ~S & S 5,14, Conjunction\r\n" ); document.write( "16. S Lines 5-15 Indirect Proof\r\n" ); document.write( "\r\n" ); document.write( "Edwin\n" ); document.write( " |