Algebra.Com's Answer #778254 by Edwin McCravy(20056)  You can put this solution on YOUR website! Determine the location and value of the absolute extreme values of f on the given \n" );
document.write( "interval, if they exist. f(x)=12x^(2/3) -x on [0,1728] \n" );
document.write( "\r\n" );
document.write( " on [0,1728] \r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "To find potential extrema set f'(x) = 0 \r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "2nd derivative test for max or min\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "That's negative so relative maximum at x=512.\r\n" );
document.write( "\r\n" );
document.write( "We find the value there.\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "So relative maximum is (512,256)\r\n" );
document.write( "\r\n" );
document.write( "We must examine to see if endpoints of interval are higher points.\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "Thus absolute maximum at (512,256), absolute minima at (0,0) and (1728,0)\r\n" );
document.write( "\r\n" );
document.write( "Edwin \n" );
document.write( " |