document.write( "Question 1155393: A box with a square bottom and no top is to be made to contain 100 cubic inches. Bottom material costs five cents per square and side material costs two cents per square inch. Find the cost of least expensive box that can be made.\r
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "Please, help out me out. \n" );
document.write( "
Algebra.Com's Answer #778030 by ikleyn(52786)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( " \r\n" ); document.write( "\r\n" ); document.write( "Let x be the size of the squared base edge and h be the height.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Then the volume is x^2*h = 100 cubic inches \r\n" ); document.write( "\r\n" ); document.write( "and the lateral surface area is 4*xh square inches.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "The total cost is C(x,y) = 5x^2 + 2*4*xh = 5x^2 + 8xh.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "So we need to minimize C(x,y) = 5x^2 + 8xh under restriction x^2*h = 100.\r\n" ); document.write( "\r\n" ); document.write( "We then express h =\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "If you want to see many other similar solved problems, look into the lesson\r \n" ); document.write( "\n" ); document.write( " - Calculus optimization problems\r \n" ); document.write( "\n" ); document.write( "in this site.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |