document.write( "Question 1155099: The sides of triangle XYZ are XY = XZ = 25 and YZ = 40. A semicircle is inscribed in triangle XYZ so that its diameter lies on YZ, and is tangent to the other two sides. Find the area of the semicircle. \n" ); document.write( "
Algebra.Com's Answer #777693 by ikleyn(52786)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "You are given the isosceles triangle XYZ.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Draw the perpendicular (the height, the altitude) from the vertex X to the base YZ.\r\n" );
document.write( "\r\n" );
document.write( "Let A be the foot of this altitude.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "According to the WELL KNOWN property of isosceles triangles, the altitude XA is the median at the same time.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Thus the original triangle XYZ is divided in two congruent right angled triangles XYA and XZA.\r\n" );
document.write( "\r\n" );
document.write( "Their legs YA and ZA are 40/2 = 20 units long (each).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, each of these two right angled triangles is (3,4,5) triangles with the hypotenuse of 25 inits long and \r\n" );
document.write( "\r\n" );
document.write( "with the legs of 20 units long (YA and ZA)  and 15 units long (the altitude XA).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The area of each of the two right angled triangles is  \"%281%2F2%29%2A20%2A15\" = 150 square units.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now I will calculate the area of the triangle XYA by another way.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Draw the altitude in the triangle XYA from its vertex A to its hypotenuse XY.\r\n" );
document.write( "\r\n" );
document.write( "Notice that this altitude's length is equal to the radius of the inscribed semi-circle (!)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "  +---------------------------------------------+\r\n" );
document.write( "  |                                             |\r\n" );
document.write( "  |  It is the major point of the solution (!)  |\r\n" );
document.write( "  |                                             |\r\n" );
document.write( "  +---------------------------------------------+\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, if \"r\" be the radius of the seni-circle, then for the area of the triangle XYA we have this equation\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    \"%281%2F2%29%2A25%2Ar\" = 150,    or\r\n" );
document.write( "\r\n" );
document.write( "     25*r     = 300.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Hence,  r = \"300%2F25\" = 12 units.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, the problem is just solved, and the  ANSWER  is  12 units for the radius and  \r\n" );
document.write( "\r\n" );
document.write( "\"%281%2F2%29%2Api%2A12%5E2\" = \"72%2Api\" square units for the area of the semi-circle.\r\n" );
document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );