document.write( "Question 1154820: Use Descartes rule of signs to find the possible positive, negative, and imaginary zeroes for:
\n" ); document.write( "x^5 − 3x^4 + x^3 − 4x^2 + 5x − 1
\n" ); document.write( "

Algebra.Com's Answer #777337 by MathLover1(20849)\"\" \"About 
You can put this solution on YOUR website!
\"x%5E5+-3x%5E4+%2B+x%5E3+-4x%5E2+%2B+5x+-+1\"\r
\n" ); document.write( "\n" ); document.write( "Here are the coefficients of our variable \"x\":\r
\n" ); document.write( "\n" ); document.write( "\"1\"..... \"-3\"..... \"1\"..... \"+-4\"..... \"+5+\"..... \"-1\"\r
\n" ); document.write( "\n" ); document.write( "As can be seen, there are \"5\" changes.\r
\n" ); document.write( "\n" ); document.write( "This means that there are \"5\" or\"+3\" or \"1\" \"positive\" real roots.\r
\n" ); document.write( "\n" ); document.write( "To find the number of \"negative\" real roots, substitute \"x\" with \"-x\" in the given polynomial:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " \"x%5E5+-3x%5E4+%2B+x%5E3+-4x%5E2+%2B+5x+-+1\" becomes \"-x%5E5-3x%5E4-x%5E3-4x%5E2-5x-1\"\r
\n" ); document.write( "\n" ); document.write( "The coefficients are \"-1\",\"-3\",\"-1\",\"-4\",\"-5\",\"-1\".\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "As can be seen, there are\"+0\" changes. This means that there are \"0\" \"negative+\"real roots.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"+graph%28+600%2C+600%2C+-5%2C+5%2C+-5%2C+5%2C+x%5E5+-3x%5E4+%2B+x%5E3+-4x%5E2+%2B+5x+-+1%29+\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "graph shows \"3\" \"positive\" real roots, means there will be one \"pair\" of \"imaginary\" roots too\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );