document.write( "Question 1154812: a. Find a polynomial of minimum degree such that when divided by x+2 has a remainder of -1 and when divided by x-1 has a remainder of 3.
\n" );
document.write( "b. Find a polynomial of degree 3 such that when divided by x^2-5x has a remainder of 6x-15 and when divided by x^2-5x+8 has a remainder of 2x-7. \n" );
document.write( "
Algebra.Com's Answer #777295 by ikleyn(52781)![]() ![]() You can put this solution on YOUR website! .\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " I will solve part (a) ONLY.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "It is clear that the polynomial can not be linear (of the degree 1).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "So, I will find such a polynomial of the degree 2 (quadratic).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Let f(x) = x^2 + bx + c be such a polynomial.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "According to the Remainder theorem, the imposed conditions are equivalent to \r\n" ); document.write( "\r\n" ); document.write( " f(-2) = -1 and f(1) = 3, or\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " (-2)^2 - 2b + c = -1 (1)\r\n" ); document.write( "\r\n" ); document.write( " 1^2 + b + c = 3 (2)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Equations (1) and (2) are equivalent to\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " - 2b + c = -5 (3)\r\n" ); document.write( "\r\n" ); document.write( " b + c = 2 (4)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "From equation (3), subtract equation (4). You will get\r\n" ); document.write( "\r\n" ); document.write( " -3b = -7; hence, b =\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " Theorem (the remainder theorem)\r \n" ); document.write( "\n" ); document.write( " 1. The remainder of division the polynomial \n" ); document.write( "\n" ); document.write( " 2. The binomial \n" ); document.write( "\n" ); document.write( " 3. The binomial \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "See the lessons\r \n" ); document.write( "\n" ); document.write( " - Divisibility of polynomial f(x) by binomial x-a and the Remainder theorem\r \n" ); document.write( "\n" ); document.write( " - Solved problems on the Remainder thoerem\r \n" ); document.write( "\n" ); document.write( "in this site.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Also, you have this free of charge online textbook in ALGEBRA-II in this site\r \n" ); document.write( "\n" ); document.write( " ALGEBRA-II - YOUR ONLINE TEXTBOOK.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The referred lessons are the part of this online textbook under the topic \n" ); document.write( "\"Divisibility of polynomial f(x) by binomial (x-a). The Remainder theorem\".\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Save the link to this online textbook together with its description\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Free of charge online textbook in ALGEBRA-I \n" ); document.write( "https://www.algebra.com/algebra/homework/quadratic/lessons/ALGEBRA-I-YOUR-ONLINE-TEXTBOOK.lesson\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "to your archive and use it when it is needed.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |