document.write( "Question 1154327: A conical tank with altitude 17.3 m is filled with water at a rate of 10.5 L/min. If it takes 6.20 hours for the tank to fill, what is the radius of the top of the tank?\r
\n" );
document.write( "\n" );
document.write( "thanks you !!!! \n" );
document.write( "
Algebra.Com's Answer #776725 by mananth(16946)![]() ![]() You can put this solution on YOUR website! Rate of filling 10.5 L/min\r \n" ); document.write( "\n" ); document.write( "height = 17.3 m \r \n" ); document.write( "\n" ); document.write( "Time of fill = 6.2 hours=372 minutes\r \n" ); document.write( "\n" ); document.write( "volume of water = 10.5 *372 =3906 L\r \n" ); document.write( "\n" ); document.write( "1m^3 = 1000 liters\r \n" ); document.write( "\n" ); document.write( "3.906 m^3 \r \n" ); document.write( "\n" ); document.write( "V = (1/3) (pi*r^2 *h)\r \n" ); document.write( "\n" ); document.write( "(3.906 *3) /(pi*h)= r^2\r \n" ); document.write( "\n" ); document.write( "r^2=0.215 \r \n" ); document.write( "\n" ); document.write( "r=0.47 m is the radius \n" ); document.write( " \n" ); document.write( " |