document.write( "Question 1153523: The first, third and ninth terms of a linear sequence (A.P) are equal to the first three terms of a exponential sequence (G.P). if the seventh term of the linear sequence is 14.
\n" ); document.write( "Calculate:
\n" ); document.write( "(a) the twentieth term of the linear sequence
\n" ); document.write( "(b) the sum of the first twelve term of the G.P.
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #775783 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "Part (a)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let {a1,a2,a3,...} be the arithmetic progression (AP) and {b1,b2,b3,...} be the geometric progression (GP)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If a1 = x, then
\n" ); document.write( "a2 = x+d for some constant d
\n" ); document.write( "a3 = x+2d
\n" ); document.write( "a4 = x+3d
\n" ); document.write( "a5 = x+4d
\n" ); document.write( "a6 = x+5d
\n" ); document.write( "a7 = x+6d = 14, given 7th term of AP
\n" ); document.write( "a8 = x+7d
\n" ); document.write( "a9 = x+8d
\n" ); document.write( "We add on d each time to get the next term.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "x+6d = 14 solves to x = 14-6d
\n" ); document.write( "We'll use this equation later. Let's call this equation (1).\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Since the first, third and ninth terms of the AP are equal to the first three terms of the GP, this means
\n" ); document.write( "a1 = b1
\n" ); document.write( "a3 = b2
\n" ); document.write( "a9 = b3\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The first three terms of the GP are
\n" ); document.write( "b1 = x
\n" ); document.write( "b2 = x*r
\n" ); document.write( "b3 = x*r^2
\n" ); document.write( "We multiply each term by r to get the next term.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Earlier we found that a3 = x+2d, which equates to b2 to get
\n" ); document.write( "a3 = b2
\n" ); document.write( "x+2d = x*r
\n" ); document.write( "14-6d+2d = (14-6d)*r ..... plug in x = 14-6d, which was equation (1).
\n" ); document.write( "14-4d = (14-6d)*r
\n" ); document.write( "r = (14-4d)/(14-6d) ... divide both sides by (14-6d)
\n" ); document.write( "We'll use this later. Call this equation (2).\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Also,
\n" ); document.write( "a9 = b3
\n" ); document.write( "x+8d = b3 ..... plug in a9 = x+8d
\n" ); document.write( "x+8d = x*r^2 .... plug in b3 = x*r^2
\n" ); document.write( "(14-6d)+8d = (14-6d)*r^2 ... plug in equation (1)
\n" ); document.write( "14+2d = (14-6d)*r^2
\n" ); document.write( "14+2d = (14-6d)*((14-4d)/(14-6d))^2 .... plug in equation (2).
\n" ); document.write( "14+2d = ((14-4d)^2)/(14-6d) .... one pair of (14-6d) terms cancel
\n" ); document.write( "(14+2d)(14-6d) = (14-4d)^2 .... multiply both sides by (14-6d)
\n" ); document.write( "196-84d+28d-12d^2 = 196-56d-56d+16d^2 .... use the FOIL rule to expand
\n" ); document.write( "196-56d-12d^2 = 196-112d+16d^2 ... combine like terms
\n" ); document.write( "0 = 196-112d+16d^2-196+56d+12d^2 .... get everything to one side
\n" ); document.write( "0 = 28d^2-56d ... combine like terms
\n" ); document.write( "28d^2-56d = 0
\n" ); document.write( "28d(d-2) = 0 ... factor
\n" ); document.write( "28d = 0 or d-2 = 0 .... zero product property
\n" ); document.write( "d = 0 or d = 2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If d = 0, then the AP is {14, 14, 14, 14, 14, 14, ...} which is trivial. Likely your teacher will want you to focus on the more interesting solution.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If d = 2, then
\n" ); document.write( "x = 14-6d
\n" ); document.write( "x = 14-6*2
\n" ); document.write( "x = 2
\n" ); document.write( "Therefore, a1 = 2 is the first term of the AP.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The nth term of the AP is
\n" ); document.write( "a(n) = a1 + d(n-1)
\n" ); document.write( "a(n) = 2 + 2(n-1)
\n" ); document.write( "a(n) = 2 + 2n-2
\n" ); document.write( "a(n) = 2n
\n" ); document.write( "A few items of the sequence are: {2, 4, 6, 8, 10, 12, 14, 16, 18, ...}
\n" ); document.write( "The first, third and ninth terms are highlighted in blue
\n" ); document.write( "Note that the sequence 2,6,18 shows up in part (b) as the first three terms of the GP.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Plug in n = 20
\n" ); document.write( "a(n) = 2n
\n" ); document.write( "a(20) = 2*20
\n" ); document.write( "a(20) = 40
\n" ); document.write( "The 20th term of the AP is 40\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "=========================================================================
\n" ); document.write( "Part (b)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Use the value of d to calculate r
\n" ); document.write( "r = (14-4d)/(14-6d)
\n" ); document.write( "r = (14-4*2)/(14-6*2)
\n" ); document.write( "r = (14-8)/(14-12)
\n" ); document.write( "r = 6/2
\n" ); document.write( "r = 3\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The first term of the GP is
\n" ); document.write( "b1 = x
\n" ); document.write( "b1 = 2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Calculate the sum of the first 12 terms of the GP. Starting term is a = 2 and common ratio is r = 3
\n" ); document.write( "Sn = a*(1-r^n)/(1-r)
\n" ); document.write( "S12 = 2*(1-3^12)/(1-3)
\n" ); document.write( "S12 = 2*(1-531441)/(1-3)
\n" ); document.write( "S12 = 2*(-531440)/(-2)
\n" ); document.write( "S12 = 531440 \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The long way to get this answer is to generate the first 12 terms
\n" ); document.write( "b1 = 2
\n" ); document.write( "b2 = 6 ... multiply previous term by r = 3 to get the next term
\n" ); document.write( "b3 = 18
\n" ); document.write( "b4 = 54
\n" ); document.write( "b5 = 162
\n" ); document.write( "b6 = 486
\n" ); document.write( "b7 = 1458
\n" ); document.write( "b8 = 4374
\n" ); document.write( "b9 = 13122
\n" ); document.write( "b10 = 39366
\n" ); document.write( "b11 = 118098
\n" ); document.write( "b12 = 354294
\n" ); document.write( "Then add up the terms
\n" ); document.write( "2+6+18+54+162+486+1458+4374+13122+39366+118098+354294 = 531440 \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );