document.write( "Question 1153437: 11. R & (R→ S), P & (P→ T)├ S & T\r
\n" );
document.write( "\n" );
document.write( "Here is what I have so far\r
\n" );
document.write( "\n" );
document.write( "1.R&(R->S) ASSUMPTION
\n" );
document.write( "2. P&(P->T) ASSUMPTION\r
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "CONCLUSION- S&T \n" );
document.write( "
Algebra.Com's Answer #775646 by MathLover1(20850)![]() ![]() You can put this solution on YOUR website! \r \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "1. R & (R→S), \r\n" ); document.write( "2. P & (P→T)\r\n" ); document.write( " ├ S & T\r\n" ); document.write( "\r\n" ); document.write( "3. R 1,simplification\r\n" ); document.write( "4. R→S 1,simplification\r\n" ); document.write( "5. S 4,3,modus ponens\r\n" ); document.write( "6. P 2,simplification\r\n" ); document.write( "7. P→T 2,simplification\r\n" ); document.write( "8. T 7,6,modus ponens\r\n" ); document.write( "9. S & T 5,7,conjunction\r\n" ); document.write( "\r\n" ); document.write( "solved by tutor Edwin\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |