document.write( "Question 1153399: One gram of soybean meal provides at least 2.5 units of vitamins and 5 calories. One gram of meat byproducts provides at least 4.5 units of vitamins and 3 calories. One gram of grain provides at least 5 units of vitamins and 10 calories. If a gram of soybean meal costs 7 ​cents, a gram of meat byproducts 9 ​cents, and a gram of grain 11 ​cents, what mixture of these three ingredients will provide at least 60 units of vitamins and 66 calories per serving at minimum​ cost? What will be the minimum​ cost? \n" ); document.write( "
Algebra.Com's Answer #775619 by ikleyn(52787)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Let X = the mass of soybean meal consumed (in grams);\r\n" );
document.write( "\r\n" );
document.write( "    Y = the mass of meat;\r\n" );
document.write( "\r\n" );
document.write( "    Z = the mass of grain.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The objective function to minimize is the cost\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    C(X,Y,Z) = 7*X + 9*Y + 11*Z  cents.      (1)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The constraints are\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    2.5*X + 4.5*Y + 5*Z  >= 60  units of vitamins,    (2)\r\n" );
document.write( "\r\n" );
document.write( "    \r\n" );
document.write( "    5*X   + 3*Y   + 10*Z >= 66  calories.             (3)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Other constraints are  X >= 0;  Y>= 0,  and  Z >= 0.  (4)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now, a remarkable fact is that the solution to this  3D  minimax problem can be obtained ANALYTICALLY.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Constraints (2) and (3) represent two planes in 3D:\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    2.5*X + 4.5*Y + 5*Z   = 60                        (5)\r\n" );
document.write( "\r\n" );
document.write( "    5*X   + 3*Y   + 10*Z  = 66                        (6)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "These planes are not parallel -- hence, their intersection is a straight line.\r\n" );
document.write( "\r\n" );
document.write( "The idea is to present this straight line in a parametric form - then the solution of the minimax problem\r\n" );
document.write( "on this straight line will be easy.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Multiply equation (5) by 2 (both sides) and then subtract equation (6) from the obtained equation.\r\n" );
document.write( "You will get\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    3Y - 9Y = 66 - 2*60,   or     -6Y = -54.  \r\n" );
document.write( "\r\n" );
document.write( "Hence,  \r\n" );
document.write( "\r\n" );
document.write( "    Y = 9.                                            (7)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Thus we found that the intersection of two planes (5) and (6) is a straight line, which lies on the plane Y = 9.\r\n" );
document.write( "\r\n" );
document.write( "Subctitute Y =9 into equations (5) and (6). You will get then\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    2.5*X + 4.5*9 + 5Z  = 60            (5')\r\n" );
document.write( "\r\n" );
document.write( "    5*X   + 3*9   + 10Z = 66,           (6')\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "or, collecting all constant terms on the right side\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    2.5*X + 5Z   = 19.5,                (5'')\r\n" );
document.write( "\r\n" );
document.write( "    5*X   + 10*Z = 39,                  (6'')\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Equations (5'') and (6'') are DEPENDENT (which is OBVIOUS).\r\n" );
document.write( "\r\n" );
document.write( "Hence, two equations (5'') and (6'') represent THE SAME plane.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, our straight line is the intersection of planes (7) and (6'').\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now, from equation (6''),\r\n" );
document.write( "\r\n" );
document.write( "     X = 7.8 - 2Z.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Thus our stright line in parametric form is\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    X = 7.8 - 2Z,  Y = 9.               (8)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Substitute (8) into the objective function (1). You will get\r\n" );
document.write( "\r\n" );
document.write( "    C(X,Y,Z) = 7*X + 9*Y + 11*Z = 7*(7.8 - 2Z) + 9*9 + 11*Z = 54.6 - 14Z + 81 + 11Z = -3Z + 135.6.    (9)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Thus, on our line the objective function is presented as the linear function (9) of Z.\r\n" );
document.write( "\r\n" );
document.write( "We see that when Z increases from 0 to positive values, the function  (9) decreases.\r\n" );
document.write( "But Z can increase only till  X = 7.8 - 2Z  is >= 0    (is non-negative).\r\n" );
document.write( "Hence, the linear function (9) has the minimum at Z = 7.8/2 = 3.9.\r\n" );
document.write( "\r\n" );
document.write( "Then X = 7.8 - 2*3.9 = 0, according to (8).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Thus we just obtained the solution to our minimax problem:\r\n" );
document.write( "\r\n" );
document.write( "    The minimum solution point is X= 0;  Y= 9  and  Z= 3.9 \r\n" );
document.write( "\r\n" );
document.write( "    and the mimimum cost is  -3*Z + 135.6 = -3*3.9 + 135.6 = 123.9.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "ANSWER.  The minimum cost is 123.90 cents (or, after rounding, $1.24) and it is achieved at this diet:\r\n" );
document.write( "\r\n" );
document.write( "         0 gram of soybean meal;  9 gram of meat,  and 3.9 gram of grain.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );