document.write( "Question 1153295: Find the area of the largest circle that can be inscribed in a hexagon of side “h”.
\n" ); document.write( "A.2.356 h2
\n" ); document.write( "B.2.441 h2
\n" ); document.write( "C.3.146 h2
\n" ); document.write( "D.1.786 h2
\n" ); document.write( "

Algebra.Com's Answer #775483 by MathLover1(20850)\"\" \"About 
You can put this solution on YOUR website!
\"Untitled-143-300x199.png\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the figure, it is clear that, we can divide the regular hexagon into\"+6+\"identical equilateral triangles.\r
\n" ); document.write( "\n" ); document.write( "We take one triangle\"+OAB\", with \"O\" as the center of the hexagon or circle, & \"AB\" as one side of the hexagon.\r
\n" ); document.write( "\n" ); document.write( "Let \"M\" be mid-point of \"AB\", \"OM\" would be the perpendicular bisector of \"AB\", angle \"AOM+=+30\"° \r
\n" ); document.write( "\n" ); document.write( "Then in right angled triangle \"OAM\",side \"a\" (in your case is \"h\")\r
\n" ); document.write( "\n" ); document.write( "\"tan%28x%29+=+tan%2830%29+=+1%2Fsqrt%283%29\"\r
\n" ); document.write( "\n" ); document.write( "So, \r
\n" ); document.write( "\n" ); document.write( "\"h%2F2r+=+1%2Fsqrt%283%29\"\r
\n" ); document.write( "\n" ); document.write( "Therefore, \r
\n" ); document.write( "\n" ); document.write( "\"r+=+%28h%2Asqrt%283%29%29%2F2\"\r
\n" ); document.write( "\n" ); document.write( "Area of circle is:
\n" ); document.write( "
\n" ); document.write( "\"A+=pi%2Ar%5E2\"\r
\n" ); document.write( "\n" ); document.write( "\"A+=pi%2A%28%28h%2Asqrt%283%29%29%2F2%29%5E2\"\r
\n" ); document.write( "\n" ); document.write( "\"A+=%283%2Api%2F4%29h%5E2\"\r
\n" ); document.write( "\n" ); document.write( "\"A+=2.356.h%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "answer: A.\"2.356h%5E2\"
\n" ); document.write( "
\n" ); document.write( "
\n" );