document.write( "Question 1153160: If sin(x)+cos(x) = -1/5, and 3pi/4 ≤ x ≤ pi, find the value of cos(2x) \n" ); document.write( "
Algebra.Com's Answer #775349 by ikleyn(52781)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "
\r\n" );
document.write( "It can be done in much simpler manner.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Start from the given equation\r\n" );
document.write( "\r\n" );
document.write( "    sin(x) + cos(x) = \"-1%2F5\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Square both sides\r\n" );
document.write( "\r\n" );
document.write( "    sin^2(x) + 2*sin(x)*cos(x) + cos^2(x) = \"1%2F25\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Replace  sin^x) + cos^2(x) by 1\r\n" );
document.write( "\r\n" );
document.write( "    1 + 2*sin(x)*cos(x) = \"1%2F25\"\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Replace 2*sin(x)*cos(x) by sin(2x)\r\n" );
document.write( "\r\n" );
document.write( "    sin(2x) = \"1%2F25\" - 1,   or   sin(2x) = \"-24%2F25\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Hence, cos^2(2x) = \"1-sin%5E2%282x%29\" = \"1-+%28-24%2F25%29%5E2\" = \"%2825%5E2-24%5E2%29%2F25%5E2%29\" = \"49%2F25%5E2\" = \"%287%2F25%29%5E2\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Since the angle (2x) is in QIV, cos(2x) is positive.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Hence,  cos(2x) = positive square root of \"%287%2F25%29%5E2\" = \"sqrt%28%287%2F25%29%5E2%29\" = \"7%2F25\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The proof is completed.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );