document.write( "Question 1151609: a pilot flying horizontally at a constant height, measures the angle of depression to a landmark to be 18 degrees. After flying 700m, the new angle of depression to the landmark is 21 degrees. At what height is the pilot flying. \n" ); document.write( "
Algebra.Com's Answer #773445 by jim_thompson5910(35256)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "There are at least two methods to solve this problem.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "============================================================================ \n" ); document.write( "Method 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Construct the diagram to look something like this. The goal is to find h \n" ); document.write( " ![]() \n" ); document.write( "The diagram is not to scale. \n" ); document.write( "Point A = plane's starting position \n" ); document.write( "Point B = plane's position after flying 700 meters \n" ); document.write( "Point C = landmark on the ground \n" ); document.write( "Point D = used to help form the angle of depression of 21 degrees \n" ); document.write( "Point E = point on ground directly under point A \n" ); document.write( "Point F = point on ground directly under point B \n" ); document.write( "Each pair of adjacent red and blue angles add up to 90 degrees (ie they are complementary angles)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The diagram may seem a bit cluttered, so you can peel triangle AEC and triangle BFC apart to get this \n" ); document.write( " ![]() \n" ); document.write( "Focus on triangle BFC \n" ); document.write( "tan(angle) = opposite/adjacent \n" ); document.write( "tan(B) = FC/FB \n" ); document.write( "tan(69) = x/h \n" ); document.write( "h*tan(69) = x \n" ); document.write( "x = h*tan(69)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Move onto triangle AEC \n" ); document.write( "tan(angle) = opposite/adjacent \n" ); document.write( "tan(A) = EC/AE \n" ); document.write( "tan(72) = (700+x)/h \n" ); document.write( "tan(72) = (700+h*tan(69))/h ... plug in x = h*tan(69) \n" ); document.write( "h*tan(72) = 700+h*tan(69) \n" ); document.write( "h*tan(72)-h*tan(69) = 700 \n" ); document.write( "h*(tan(72)-tan(69)) = 700 \n" ); document.write( "h = 700/(tan(72)-tan(69)) \n" ); document.write( "h = 1481.18533068004 is the approximate height in meters.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "============================================================================ \n" ); document.write( "Method 2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The diagram will be similar, but it now looks like this \n" ); document.write( " ![]() \n" ); document.write( "The diagram is not to scale. \n" ); document.write( "Points A,B,C,D are defined the same way as in the previous diagram. \n" ); document.write( "Angle B = 159 because angle ABC = 180-(angle DBC) = 180-21 = 159 \n" ); document.write( "Angle C = 3 degrees comes from the fact that A+B+C = 180\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Focus solely on triangle ABC (ie ignore point D) \n" ); document.write( "Use the law of sines to find side 'a'. \n" ); document.write( "a/sin(A) = c/sin(C) \n" ); document.write( "a/sin(18) = 700/sin(3) \n" ); document.write( "a = sin(18)*700/sin(3) \n" ); document.write( "a = 4133.14118229429\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now we can use the SAS triangle area formula \n" ); document.write( "area = (1/2)*side1*side2*sin(included angle) \n" ); document.write( "area = (1/2)*a*c*sin(B) \n" ); document.write( "area = (1/2)*4133.14118229429*700*sin(159) \n" ); document.write( "area = 518414.865738014 \n" ); document.write( "This is the approximate area of triangle ABC.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Finally, turn to the formula \n" ); document.write( "area = (1/2)*base*height \n" ); document.write( "to help find the height of the triangle ABC\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "area = (1/2)*base*height \n" ); document.write( "518414.865738014 = (1/2)*700*h \n" ); document.write( "518414.865738014*2 = 700*h \n" ); document.write( "1036829.73147602 = 700*h \n" ); document.write( "700*h = 1036829.73147602 \n" ); document.write( "h = 1036829.73147602/700 \n" ); document.write( "h = 1481.18533068002 which was roughly the same approximate height we got earlier. \n" ); document.write( " \n" ); document.write( " |