document.write( "Question 1151506: A researcher wishes to estimate the proportion of adults who have​ high-speed Internet access. What size sample should be obtained if she wishes the estimate to be within 0.04 with 95​% confidence if
\n" ); document.write( "​(a) she uses a previous estimate of 0.52​?
\n" ); document.write( "​(b) she does not use any prior​ estimates?
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #773280 by rothauserc(4718)\"\" \"About 
You can put this solution on YOUR website!
Margin of error(ME) = 0.04
\n" ); document.write( ":
\n" ); document.write( "critical value(CV) for a 95% confidence is 1.96
\n" ); document.write( ":
\n" ); document.write( "sample size(n) = ( CV^2 * p * (1-p) ) / ME^2
\n" ); document.write( ":
\n" ); document.write( "(a) n = ( 1.96^2 * 0.52 * (1-0.52) ) / 0.04^2 = 599.2896 is approximately 600
\n" ); document.write( ":
\n" ); document.write( "(b) when proportion is not known use p = 0.50
\n" ); document.write( ":
\n" ); document.write( "n = ( 1.96^2 * 0.50 * (1-0.50) ) / 0.04^2 = 600.25 is approximately 601
\n" ); document.write( ":
\n" ); document.write( "
\n" ); document.write( "
\n" );