document.write( "Question 1151227: if an equilateral triangle has area equal to 10, what is its height?\r
\n" ); document.write( "\n" ); document.write( "A) 5 / sqrt(3)
\n" ); document.write( "B) sqrt(10) * (root(4)(3))
\n" ); document.write( "c) sqrt(40) / (root(4)(3))
\n" ); document.write( "

Algebra.Com's Answer #772903 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "h = height of equilateral triangle
\n" ); document.write( "x = side length of equilateral triangle\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Start with equilateral triangle ABC. Mark point D as the midpoint of one of the sides and draw a line to the opposing vertex. In this case, I marked the midpoint of AB and connected that to vertex C. This forms the height of the triangle. CD is perpendicular to AB. The base here is AB = x, half of which is x/2.
\n" ); document.write( "
\n" ); document.write( "Focus on triangle CDB
\n" ); document.write( "a = x/2 and b = h are the two legs
\n" ); document.write( "c = x is the hypotenuse\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Use the Pythagorean Theorem to solve for h
\n" ); document.write( "a^2 + b^2 = c^2
\n" ); document.write( "(x/2)^2 + h^2 = x^2
\n" ); document.write( "(x^2)/4 + h^2 = x^2
\n" ); document.write( "h^2 = x^2 - (x^2)/4
\n" ); document.write( "h^2 = (4x^2)/4 - (x^2)/4
\n" ); document.write( "h^2 = (4x^2-x^2)/4
\n" ); document.write( "h^2 = (3x^2)/4
\n" ); document.write( "h = sqrt( (3x^2)/4 )
\n" ); document.write( "h = sqrt(3x^2)/sqrt(4)
\n" ); document.write( "h = (sqrt(x^2)*sqrt(3))/sqrt(4)
\n" ); document.write( "h = (x*sqrt(3))/2
\n" ); document.write( "h = (x/2)*sqrt(3)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Plug this into the area of a triangle formula to get the area of an equilateral triangle formula
\n" ); document.write( "A = (1/2)*b*h
\n" ); document.write( "A = (1/2)*x*(x/2)*sqrt(3)
\n" ); document.write( "A = (1/4)*x^2*sqrt(3)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now plug in the given area A = 10 and solve for x.
\n" ); document.write( "10 = (1/4)*x^2*sqrt(3)
\n" ); document.write( "10*4 = x^2*sqrt(3)
\n" ); document.write( "40 = x^2*sqrt(3)
\n" ); document.write( "x^2*sqrt(3) = 40
\n" ); document.write( "x^2 = 40/sqrt(3)
\n" ); document.write( "x = sqrt(40/sqrt(3))
\n" ); document.write( "x = sqrt(40)/sqrt(sqrt(3))
\n" ); document.write( "x = sqrt(40)/(3^(1/4))
\n" ); document.write( "x = sqrt(40)/root(4,3)
\n" ); document.write( "x = sqrt(4*10)/root(4,3)
\n" ); document.write( "x = sqrt(4)*sqrt(10)/root(4,3)
\n" ); document.write( "x = 2*sqrt(10)/root(4,3)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now use this to find h
\n" ); document.write( "h = (x/2)*sqrt(3)
\n" ); document.write( "h = (1/2)*sqrt(3)*x
\n" ); document.write( "h = (1/2)*sqrt(3)*( 2*sqrt(10)/root(4,3) )
\n" ); document.write( "h = sqrt(3)*sqrt(10)/root(4,3)
\n" ); document.write( "h = sqrt(10)*sqrt(3)/root(4,3)
\n" ); document.write( "h = sqrt(10)*(3^(1/2))/(3^(1/4))
\n" ); document.write( "h = sqrt(10)*3^(1/2-1/4)
\n" ); document.write( "h = sqrt(10)*3^(1/4)
\n" ); document.write( "h = sqrt(10)*root(4,3)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer: B) sqrt(10)*root(4,3)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: root(4,3) refers to the 4th root of 3. So root(4,3) can be written as \"root%284%2C3%29\". In terms of exponents, \"root%284%2C3%29+=+3%5E%281%2F4%29%5E%22%22\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------\r
\n" ); document.write( "\n" ); document.write( "Here is an alternate way to get the answer\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "x = half the side length of the equilateral triangle (eg: DB = x)
\n" ); document.write( "h = height of equilateral triangle
\n" ); document.write( "a^2 + b^2 = c^2 ... pythagorean theorem
\n" ); document.write( "x^2 + h^2 = (2x)^2
\n" ); document.write( "x^2 + h^2 = 4x^2
\n" ); document.write( "h^2 = 3x^2
\n" ); document.write( "h = sqrt(3x^2)
\n" ); document.write( "h = x*sqrt(3)
\n" ); document.write( "x = h/sqrt(3)
\n" ); document.write( "2x = 2h/sqrt(3) is the full base of the equilateral triangle\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "A = 0.5*base*height
\n" ); document.write( "A = 0.5*2x*h
\n" ); document.write( "A = 0.5*(2h/sqrt(3))*h
\n" ); document.write( "A = h^2*3^(-1/2)
\n" ); document.write( "10 = h^2*3^(-1/2)
\n" ); document.write( "10*3^(1/2) = h^2
\n" ); document.write( "h = (10*3^(1/2))^(1/2)
\n" ); document.write( "h = (10)^(1/2)*(3^(1/2))^(1/2)
\n" ); document.write( "h = sqrt(10)*(3^(1/2))^(1/2)
\n" ); document.write( "h = sqrt(10)*3^(1/4)
\n" ); document.write( "h = sqrt(10)*root(4,3)\r
\n" ); document.write( "\n" ); document.write( "
\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );