document.write( "Question 1151079: A hemisphere and a right circular cone on equal bases are of equal height. find the ratio of their volumes. \n" ); document.write( "
Algebra.Com's Answer #772693 by jim_thompson5910(35256)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "Vs = Volume of sphere \n" ); document.write( "Vs = (4/3)*pi*r^3\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "A hemisphere is half a sphere. \n" ); document.write( "Vh = Volume of hemisphere \n" ); document.write( "Vh = (1/2)*Vs \n" ); document.write( "Vh = (1/2)*(4/3)*pi*r^3 \n" ); document.write( "Vh = (4/6)*pi*r^3 \n" ); document.write( "Vh = (2/3)*pi*r^3\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We're told that both the hemisphere and cone have the same height. \n" ); document.write( "The height of the hemisphere is the radius r, so for the cone, h = r. \n" ); document.write( "Vc = Volume of cone \n" ); document.write( "Vc = (1/3)*pi*r^2*h \n" ); document.write( "Vc = (1/3)*pi*r^2*r ... plug in h = r \n" ); document.write( "Vc = (1/3)*pi*r^3\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Divide the hemisphere volume over the cone volume.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The ratio of the hemisphere volume to the cone volume is 2:1. \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "This means the hemisphere has twice the volume of the cone. \n" ); document.write( "Put another way, \n" ); document.write( "Vh = 2*Vc \n" ); document.write( "which can be rearranged to \n" ); document.write( "Vc = (1/2)*Vh\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "This only works if the cone and hemisphere share the same circular base, and also have the same height (h = r).\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "--------------------\r \n" ); document.write( "\n" ); document.write( "side note:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "If we start with Vh = 2*Vc and plug in Vc = (1/3)*pi*r^3, then we get, \n" ); document.write( "Vh = 2*Vc \n" ); document.write( "Vh = 2*(1/3)*pi*r^3 \n" ); document.write( "Vh = (2/3)*pi*r^3 \n" ); document.write( "Or we could start with Vc = (1/2)*Vh and plug in Vh = (2/3)*pi*r^3 to get, \n" ); document.write( "Vc = (1/2)*Vh \n" ); document.write( "Vc = (1/2)*(2/3)*pi*r^3 \n" ); document.write( "Vc = (1/3)*pi*r^3 \n" ); document.write( "This helps confirm our answer. \n" ); document.write( " \n" ); document.write( " |