document.write( "Question 1150956: A rectangular area of 1,050 square feet is to be enclosed by a fence, then divided down the middle by another piece of fence. The fence down the middle costs $0.50 per running foot, and the other fence costs $1.50 per running foot. Find the minimum cost for the required fence. \n" ); document.write( "
Algebra.Com's Answer #772584 by ikleyn(52793)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "From the context, the dimensions of the rectangle are not given for advance - they are unknowns and they should be found\r\n" );
document.write( "\r\n" );
document.write( "from the minimum cost condition.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Let x be one dimension and y be the other dimension of the rectangle.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Then the cost of the outside perimeter fence is 1.50*(2x+2y) dollars = 3*(x+y) dollars,\r\n" );
document.write( "\r\n" );
document.write( "while the cost of the fence down middle is 0.50*x dollars.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    Note, that I don't know now, which dimension will be the length and which be the width.\r\n" );
document.write( "\r\n" );
document.write( "    When the problem will be solved, the solution will tell me it . . . \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, I need minimize the function  \r\n" );
document.write( "\r\n" );
document.write( "        f(x,y) = 3*(x+y) + 0.5x     (1)\r\n" );
document.write( "\r\n" );
document.write( "under the condition\r\n" );
document.write( "\r\n" );
document.write( "        x*y = 1050.                 (2)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "From (2), express  y = \"1050%2Fx\"  and substitute it into (1). You will get\r\n" );
document.write( "\r\n" );
document.write( "        g(x) = \"3%2A%28x%2B+1050%2Fx%29+%2B+0.5x\" = \"3x\" + \"3150%2Fx\" + \"0.5x\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Differentiate it over x\r\n" );
document.write( "\r\n" );
document.write( "        g'(x) = \"3\" - \"3150%2Fx%5E2\" + \"0.5\"\r\n" );
document.write( "\r\n" );
document.write( "and equate the derivative to zero.  You will get\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "        3.5 = \"3150%2Fx%5E2\",    or\r\n" );
document.write( "\r\n" );
document.write( "        3.5x^2 = 3150\r\n" );
document.write( "\r\n" );
document.write( "           x^2 = \"3150%2F3.5\" = 900,\r\n" );
document.write( "\r\n" );
document.write( "           x   = \"sqrt%28900%29\" = 30.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Thus the dimensions of the rectangle are 30 ft  and  \"1050%2F30\" = 35 ft.\r\n" );
document.write( "\r\n" );
document.write( "The fence down middle has the length of 30 ft;  hence, it is parallel to the shorter side of the rectangle.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If you want to see many other similar solved problems, look into the lesson \r
\n" ); document.write( "\n" ); document.write( "    - Calculus optimization problems\r
\n" ); document.write( "\n" ); document.write( "in this site.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );