document.write( "Question 1150766: if p(x+y) = 2x² +3y², and q(x+y)=4x-18y-39, where x and y are real numbers, what is the minimum value of p(x+y)-q(x+y)? \n" ); document.write( "
Algebra.Com's Answer #772197 by ikleyn(52834)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( " \r\n" ); document.write( "\r\n" ); document.write( "The difference is\r\n" ); document.write( "\r\n" ); document.write( " p(x+y)-q(x+y) = 2x^2 + 3y^2 - 4x + 18y + 39\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Continue by completing the squares\r\n" ); document.write( "\r\n" ); document.write( " = (2x^2 - 4x) + (3y^2 + 18y) + 39\r\n" ); document.write( "\r\n" ); document.write( " = 2*(x^2 - 2x) + 3*(y^2 + 6y) + 39 =\r\n" ); document.write( "\r\n" ); document.write( " = 2*(x^2 - 2x + 1) + 3*(y^2 + 6y + 9) + 39 - 2 - 27 =\r\n" ); document.write( "\r\n" ); document.write( " = 2*(x-1)^2 + 3*(y+3)^2 + 10.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "The minimum is achieved at x= 1, y= -3 and is equal to 10. ANSWER\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |