document.write( "Question 1150113: I need help constructing an indirect proof using reductio ad absurdum for:\r
\n" );
document.write( "\n" );
document.write( "~S → (F → L), F → (L → P), therefore, ~S → (F → P)\r
\n" );
document.write( "\n" );
document.write( "Can the proof be performed more efficiently by using different equivalence rules?
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #771628 by Edwin McCravy(20056)![]() ![]() You can put this solution on YOUR website! \r\n" ); document.write( "1. ~S → (F → L), \r\n" ); document.write( "2. F → (L → P), therefore, ~S → (F → P)\r\n" ); document.write( "\r\n" ); document.write( " | 3. ~[~S → (F → P)] Assumption for Indirect Proof\r\n" ); document.write( " | 4. ~[~S → (~F v P)] 3, Material Implication \r\n" ); document.write( " | 5. ~[~~S v (~F v P)] 4, Material Implication \r\n" ); document.write( " | 6. ~{S v (~F v P)] 5, Double Negation\r\n" ); document.write( " | 7. ~S & ~(~F v P) 6, DeMorgan's Law\r\n" ); document.write( " | 8. ~S & (~~F & ~P) 7, DeMorgan's Law\r\n" ); document.write( " | 9. ~S & (F & ~P) 8, Double Negation \r\n" ); document.write( " |10. ~S 9, Simplification\r\n" ); document.write( " |11. F → L 1,10, Modus Ponens\r\n" ); document.write( " |12. (F & ~P) & ~S 9. Commutation\r\n" ); document.write( " |13. F & (~P & ~S) 12, Association\r\n" ); document.write( " |14. F 13, Simplification\r\n" ); document.write( " |15. L → P 2,14 Modus Ponens\r\n" ); document.write( " |16. L 11,14 Modus Ponens\r\n" ); document.write( " |17. P 15,16 Modus Ponens \r\n" ); document.write( " |18. (F & ~P) & ~S 9, Commutation\r\n" ); document.write( " |19. (~P & F) & ~S 18, Commutation\r\n" ); document.write( " |20. ~P & (F & ~S) 19, Asociation\r\n" ); document.write( " |21. ~P 20, Simplification\r\n" ); document.write( " |22. P & ~P 17,21 Conjunction \r\n" ); document.write( "23. ~S → (F → P) Lines 3-22 Indirect Proof\r\n" ); document.write( "\r\n" ); document.write( "Edwin\n" ); document.write( " |