document.write( "Question 1148549: Find the exact values of the six trigonometric functions of θ if θ is in standard position and the terminal side of θ is in the specified quadrant and satisfies the given condition.
\n" );
document.write( "IV; on the line 3x + 5y = 0 \n" );
document.write( "
Algebra.Com's Answer #769882 by psbhowmick(878) You can put this solution on YOUR website! Equation of the line: 3x + 5y = 0 i.e. y = -(3/5)x\r \n" ); document.write( "\n" ); document.write( "Slope of the line = -3/5\r \n" ); document.write( "\n" ); document.write( "tan θ = -3/5 (negative since in Quadrant IV) \n" ); document.write( "cot θ = 1/tan θ = 5/3\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We know \n" ); document.write( "cosec² □ - cot² θ = 1 \n" ); document.write( "cosec² θ = 1 + cot² θ \n" ); document.write( "cosec θ = √(1 + cot² θ) = -√(1 + (5/3)²) = -√34/3\r \n" ); document.write( "\n" ); document.write( "sin θ = 1/cosec θ = -3/√34\r \n" ); document.write( "\n" ); document.write( "cos θ = √(1 - sin² θ) = √(1 - 9/34) = 5/√34 \n" ); document.write( "sec θ = 1/cos θ = √34/5 \n" ); document.write( " |