document.write( "Question 1148245: Find two nonnegative numbers whose sum is 9 and so that the product of one
\n" ); document.write( "number and the square of the other number is a maximum 10.
\n" ); document.write( "

Algebra.Com's Answer #769658 by ikleyn(52855)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "Find two nonnegative numbers whose sum is 9 and so that the product of one
\n" ); document.write( "number and the square of the other number is a maximum 10.
\n" ); document.write( "~~~~~~~~~~~~~~~~\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "            Formulation of your post is  NOT  CORRECT  and makes a few sense, if any . . . \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "            Meanwhile,  an interesting problem may stay behind it --- so I edited it,  to make sense and to create really interesting problem.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "            My editing is as follows.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "              Prove that if the sum of two non-negative real number \"x\" and \"y\" is 9,  x + y = 9,\r\n" );
document.write( "\r\n" );
document.write( "              then the product  \"x%2Ay%5E2\"  has the local maximum value of 108.\r\n" );
document.write( "\r\n" );
document.write( "              Find the values of x and y that provide this maximum.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "            With this reformulation,  the solution is below.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Solution\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "If  x+y = 9,  then  y = 9-x,  and the function  f(x,y) = \"x%2Ay%5E2\"  is\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    f(x,y) = \"x%2Ay%5E2\" = \"x%2A%289-x%29%5E2\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, we need to find the maximum of the function of x  g(x) = \"x%2A%289-x%29%5E2\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "To find the maximum of the function g(x), take its derivative and equate it to zero.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The derivative is\r\n" );
document.write( "\r\n" );
document.write( "    g'(x) = \"%289-x%29%5E2\" - 2x*(9-x) = \"81+-+18x+%2B+x%5E2\" - \"%2818x+-+2x%5E2%29\" = \"81+-+36x+%2B+3x%5E2\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Equating it to zero, you get\r\n" );
document.write( "\r\n" );
document.write( "    \"81+-+36x+%2B+x%5E2\" = 0,  which is equivalent to  \"x%5E2+-+12x+%2B+27\" = 0.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Left side is factorable\r\n" );
document.write( "\r\n" );
document.write( "    (x-9)*(x-3) = 0.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "and two solution of the quadratic equation are x= 9  and  x= 3.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The value x= 9 provides the local minimum of the function f(x), while x= 3 provides the local maximum.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "At x= 3,  y= 9-3 = 6,  and the function g(x,y) = \"3%2A6%5E2\" = 108.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    \"graph%28+330%2C+330%2C+-4%2C+20%2C+-20%2C+120%2C%0D%0A++++++++++x%2A%289-x%29%5E2%0D%0A%29\"\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "        Plot  g(x) = x*(9-x)^2\r\n" );
document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );