document.write( "Question 1148023: Find b such that the points A(2,b),B(5,5)and C(-6,0) are the vertices of right angled \"highlight%28triangle%29\" with angle < BAC = 90 degree. \n" ); document.write( "
Algebra.Com's Answer #769389 by Boreal(15235)\"\" \"About 
You can put this solution on YOUR website!
AB distance is sqrt (diff x^2+diff y^2) or sqrt((b-5)^2+9) or sqrt(b^2-10b+34)
\n" ); document.write( "BC distance is sqrt(11^2+5^2)=sqrt(146). I will call that the hypotenuse
\n" ); document.write( "CA distance is sqrt(8^2+b^2)
\n" ); document.write( "AB^2+CA^2=BC^2
\n" ); document.write( "or b^2-10b+34+b^2+64=146
\n" ); document.write( "or 2b^2-10b+98=146
\n" ); document.write( "or b^2-5b-24=0
\n" ); document.write( "(b-8)(b+3)=0
\n" ); document.write( "b=8 only positive root\r
\n" ); document.write( "\n" ); document.write( "The points are (2, 8) (5, 5) and (-6, 0)
\n" ); document.write( "
\n" );