document.write( "Question 1147593: Given: AB∥DC,DE⊥AB,AD = BC
\n" ); document.write( " m∠ADC = 134°
\n" ); document.write( " AD = 40, DC = 32
\n" ); document.write( " Find: Area of ABCD
\n" ); document.write( "https://www.bing.com/images/blob?bcid=T8FJaMRAB4YAoQ
\n" ); document.write( "

Algebra.Com's Answer #769012 by Edwin McCravy(20065)\"\" \"About 
You can put this solution on YOUR website!
\r\n" );
document.write( "\r\n" );
document.write( "AB∥DC tells us that ABCD is a trapezoid (trapezium in the UK).\r\n" );
document.write( "AD = BC tells us it is an isosceles trapezoid. \r\n" );
document.write( "m∠ADC = 134°, ∠ADC and ∠A are supplementary, so ∠A = 180°-134°=46°\r\n" );
document.write( "\r\n" );
document.write( "\"DE%2FAD=sin%28%22%22%3CA%29\"\r\n" );
document.write( "\r\n" );
document.write( "\"DE%2FAD=sin%2846%5Eo%29\"\r\n" );
document.write( "\r\n" );
document.write( "\"DE=AD%2Asin%2846%5Eo%29\"\r\n" );
document.write( "\r\n" );
document.write( "\"DE=40%2A0.7193398003\"\r\n" );
document.write( "\r\n" );
document.write( "\"DE=28.77359201\"\r\n" );
document.write( "\r\n" );
document.write( "\"AE%2FAD=cos%28%22%22%3CA%29\"\r\n" );
document.write( "\r\n" );
document.write( "\"AE%2FAD=cos%2846%5Eo%29\"\r\n" );
document.write( "\r\n" );
document.write( "\"AE=AD%2Acos%2846%5Eo%29\"\r\n" );
document.write( "\r\n" );
document.write( "\"AE=40%2A0.6946583705\"\r\n" );
document.write( "\r\n" );
document.write( "\"AE=27.78633482\"\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Area of triangle BCF is also 399.7563308\r\n" );
document.write( "\r\n" );
document.write( "Area of rectangle DEFC = EF∙DE = 32∙28.77359201 = 920.7549443\r\n" );
document.write( "\r\n" );
document.write( "Adding the two triangles' and the rectangle's areas:\r\n" );
document.write( "\r\n" );
document.write( "399.7563308 + 399.7563308 + 920.7549443 = 1720.267606\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" ); document.write( "
\n" );