document.write( "Question 1147640: A pair of dice are tossed twice.\r
\n" ); document.write( "\n" ); document.write( "Find the probability that the first roll is a total of at least 6 and the second roll is a total of at least 9.
\n" ); document.write( "

Algebra.Com's Answer #768989 by ikleyn(52787)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "When a pair of dice are tossed once, the sample space is the set of 36 pairs (a,b) of integer numbers \"a\" and \"b\"\r\n" );
document.write( "\r\n" );
document.write( "from 1 to 6 inclusively, with the probability  \"1%2F36\"  for each event (pair).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "When a pair of dice are tossed twice, the sample space is the set of 36*36 pairs (a,b) and (x,y) of integer numbers \"a\", \"b\", x and y\r\n" );
document.write( "\r\n" );
document.write( "from 1 to 6 inclusively, with the probability  \"1%2F36%5E2\"  for each event (which is two pairs {(a,b),(x,y)} ).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The probability that the first roll is a total of at least 6 is\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    P( the total of the first tossing) >= 6) = P(6) + P(7) + P(8) + P(9) + P(10) + P(11) + P(12).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    P(6)  is   \"5%2F36\"    //   6 = 1+5 = 2+4 = 3+3 = 4+2 = 5+1\r\n" );
document.write( "\r\n" );
document.write( "    P(7)  is   \"6%2F36\"    //   7 = 1+6 = 2+5 = 3+4 = 4+3 = 5+2 = 6+1\r\n" );
document.write( "\r\n" );
document.write( "    P(8)  is   \"5%2F36\"    //   8 = 2+6 = 3+5 = 4+4 = 5+3 = 6+2\r\n" );
document.write( "\r\n" );
document.write( "    P(9)  is   \"4%2F36\"    //   9 = 3+6 = 4+5 = 5+4 = 6+3\r\n" );
document.write( "\r\n" );
document.write( "    P(10) is   \"3%2F36\"    //  10 = 4+6 = 5+5 = 6+4\r\n" );
document.write( "\r\n" );
document.write( "    P(11) is   \"2%2F36\"\r\n" );
document.write( "\r\n" );
document.write( "    P(12) is   \"1%2F36\"\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Therefore, P( the total of the first tossing) >= 6) = \"%285%2B6%2B5%2B4%2B3%2B2%2B1%29%2F36\" = \"26%2F36\" = \"13%2F18\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The probability that the second roll is a total of at least 9 is\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    P( the total of the second tossing) >= 9) = P(9) + P(10) + P(11) + P(12) = \"%284%2B3%2B2%2B1%29%2F36\" = \"10%2F36\" = \"5%2F18\".\r\n" );
document.write( "\r\n" );
document.write( "                \r\n" );
document.write( "\r\n" );
document.write( "The outcomes of the first and second rolls are INDEPENDENT, therefore, the final probability under the question is\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    \"13%2F18\".\"5%2F18\" = \"65%2F324\".    ANSWER\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "See the lesson\r
\n" ); document.write( "\n" ); document.write( "    - Rolling a pair of fair dice \r
\n" ); document.write( "\n" ); document.write( "in this site.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );