document.write( "Question 1146865: What is the maximum amount of fencing needed to construct a rectangle enclosure containing 1800 ft^2 using a river as a natural boundary on one side? \n" ); document.write( "
Algebra.Com's Answer #768171 by ikleyn(52781)\"\" \"About 
You can put this solution on YOUR website!
.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "            Regarding this post,  I have two notices.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "1.   Your formulation is  INCORRECT.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "       The question should ask about the  MINIMUM  length of the fencing ---- NOT about the maximum length. \r
\n" ); document.write( "\n" ); document.write( "       The maximum length  DOES  NOT  EXIST.   You can make your enclosure longer and narrower,  by keeping the same area.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "       The correct formulation is  THIS :\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
  \r\n" );
document.write( "           What is the \"highlight%28minimum%29\" fencing length needed to construct a rectangle enclosure \r\n" );
document.write( "           containing 1800 ft^2 using a river as a natural boundary on one side? \r\n" );
document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "2.   The \"solution\" by @josgarithmetic is   TOTALLY   WRONG,  starting from its third line to the end.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "       So you better simply  IGNORE  it.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "      Below find my correct solution.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "xy = 1800              (1)\r\n" );
document.write( "\r\n" );
document.write( "x + 2y -----> minimize        (x is the length along the river)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So your task is to minimize (x+2y) under the given condition/restriction  (1).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "From (1),  x = \"1800%2Fy\",  so we need to minimize the function  f(y) = \"1800%2Fy+%2B+2y\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The derivative  f'(y) = -\"1800%2Fy%5E2\" + 2.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "To find the minimum of f(y), equate its derivative to zero\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    -\"1800%2Fy%5E2\" + 2 = 0\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    \"1800%2Fy%5E2\" = 2\r\n" );
document.write( "\r\n" );
document.write( "    \"y%5E2\" = \"1800%2F2\" = 900\r\n" );
document.write( "\r\n" );
document.write( "    y = \"sqrt%28900%29\" = 30.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "ANSWER.  The minimum fencing is at y = 30 ft perpendicular to the river and x = \"1800%2Fy\" = \"1800%2F30\" = 60 ft along the river.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );