document.write( "Question 1145198: Find k and the points T of contact if the parabola y=x^2 - k touches the cubic y=x^3 \n" ); document.write( "
Algebra.Com's Answer #766415 by Alan3354(69443)![]() ![]() You can put this solution on YOUR website! Find k and the points T of contact if the parabola y=x^2 - k touches the cubic y=x^3 \n" ); document.write( "----------- \n" ); document.write( "If by \"touch\" you mean tangent: \n" ); document.write( "If k = 0, they are tangent at the Origin, and there is an intersection. \n" ); document.write( "============= \n" ); document.write( "y = x^3 \n" ); document.write( "y' = 3x^2 (1st derivative = slope at x) \n" ); document.write( "---- \n" ); document.write( "y = x^2 - k \n" ); document.write( "y' = 2x \n" ); document.write( "========== \n" ); document.write( "Find where the 2 slopes are equal. \n" ); document.write( "3x^2 = 2x \n" ); document.write( "3x^2 - 2x = 0 \n" ); document.write( "x = 0 \n" ); document.write( "===== \n" ); document.write( "3x = 2 \n" ); document.write( "x = 2/3 \n" ); document.write( "--- \n" ); document.write( "(2/3)^3 - (2/3)^2 + k = 0 \n" ); document.write( "8/27 - 12/27 = -k \n" ); document.write( "k = 4/27 \n" ); document.write( "======== \n" ); document.write( "And there's an intersection in Q3. \n" ); document.write( " \n" ); document.write( " |