document.write( "Question 1144206: 2c. Examine the diagram and explain how it illustrates a value of (n2 + n)/2.\r
\n" ); document.write( "\n" ); document.write( " ⚫⚫⚫🔴
\n" ); document.write( " ⚫⚫🔴🔴 (the sizes of the circles don't matter, just the colors)
\n" ); document.write( " ⚫🔴🔴🔴\r
\n" ); document.write( "\n" ); document.write( "2d. Draw a similar diagram to represent \"+%28n%5E2+%2B+n%29%2F2+\" for n = 5.
\n" ); document.write( "

Algebra.Com's Answer #765239 by greenestamps(13200)\"\" \"About 
You can put this solution on YOUR website!

\r
\n" ); document.write( "\n" ); document.write( "⚫⚫⚫🔴
\n" ); document.write( "⚫⚫🔴🔴
\n" ); document.write( "⚫🔴🔴🔴 \r
\n" ); document.write( "\n" ); document.write( "That diagram illustrates (n^2+n)/2 for n=3.

\n" ); document.write( "For n=3, n^2+n = n(n+1) = 3(4); the diagram shows a 3x4 array of circles. Dividing the array in half diagonally illustrates (n^2+n)/2 for n=3:
\r
\n" ); document.write( "\n" ); document.write( "⚫⚫⚫ / 🔴
\n" ); document.write( "⚫⚫ / 🔴🔴
\n" ); document.write( "⚫ / 🔴🔴🔴 \r
\n" ); document.write( "\n" ); document.write( "This array then shows that (n^2+n)/2 for n=3 is equal to 1+2+3 = 6.

\n" ); document.write( "For n=5, (n^2+n)/2 = (n(n+1))/2 = (5*6)/2, so the corresponding diagram will show a 5x6 array of circles divided in half diagonally:
\r
\n" ); document.write( "\n" ); document.write( "⚫⚫⚫⚫⚫ / 🔴
\n" ); document.write( "⚫⚫⚫⚫ / 🔴🔴
\n" ); document.write( "⚫⚫⚫ / 🔴🔴🔴
\n" ); document.write( "⚫⚫ / 🔴🔴🔴🔴
\n" ); document.write( "⚫ / 🔴🔴🔴🔴🔴\r
\n" ); document.write( "\n" ); document.write( "And this diagram shows that (n^2+n)/2 for n=5 is equal to 1+2+3+4+5 = 15.
\n" ); document.write( "
\n" );