document.write( "Question 1144125: Can someone help me with this? Thank you.
\n" ); document.write( "I need to find all the zeros of the function f(x)=-2x^4-5x^3-5x^2-20x+12, given -3 is a zero.
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #765126 by ikleyn(52781)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "You can apply the \"Rational roots theorem\" first.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The theorem will tell you that possible rational roots are among some finite set of rational and integer numbers. \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "It is good, but does not help too much.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Therefore, in such cases I simply make a plot of the polynomial, and the plot (see the Figure below) points you \r\n" );
document.write( "all possible real / rational / integer roots.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    Plot y = \"-2x%5E4-5x%5E3-5x%5E2-20x%2B12\"\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "In this case the roots -3 and \"1%2F2\" are pointed.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Surely, having this tip, you should check directly that these numbers really are the roots.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "But if it is so, then the polynomial is divisible by the binomials  (x-(-3)) = (x+3)  and  (2x-1).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Thus the polynomial should be divisible by the product  (x+3)*(2x-1) = 2x^2 + 5x - 6 without a remainder.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, make this long division and find the quotient. The quotient will be the polynomial of the degree 2 (quadratic).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Finding the roots of this quadratic is elementary job. (The rest of the roots could be complex numbers, though).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "In this way, you will get the answer.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Happy calculations (!)\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Notice that I communicate with you, assuming that you are a real student, who knows some basics (adequate to the problem)
\n" ); document.write( "and is able to do the job and to complete it on his (or her) own, having clear instructions.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );