.
\n" );
document.write( "\r\n" );
document.write( "If k+1, 2k-1, 3k+1 are three consecutive terms of a geometric progression, then\r\n" );
document.write( "\r\n" );
document.write( " the ratio
is equal to the ratio
,\r\n" );
document.write( "\r\n" );
document.write( "by the definition of a geometric progression.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Hence,\r\n" );
document.write( "\r\n" );
document.write( "
=
.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "It implies\r\n" );
document.write( "\r\n" );
document.write( " (3k+1)*(k+1) = (2k-1)^2\r\n" );
document.write( "\r\n" );
document.write( " 3k^2 + k + 3k + 1 = 4k^2 - 4k + 1\r\n" );
document.write( "\r\n" );
document.write( " k^2 - 8k = 0\r\n" );
document.write( "\r\n" );
document.write( " k*(k-8) = 0\r\n" );
document.write( "\r\n" );
document.write( "which has two roots k= 0 and k= 8.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "If k= 0, then the first and the second terms of the GP are k+1 = 1 and 2k-1 = -1, so the common ratio is
= -1.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "If k= 8, then the first and the second terms of the GP are k+1 = 9 and 2k-1 = 15, so the common ratio is
=
.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "ANSWER. Under given conditions, the common ratio may have one of the two values -1 and/or
.\r\n" );
document.write( "
\r
\n" );
document.write( "\n" );
document.write( "Solved (with a complete explanation).\r
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "