document.write( "Question 1143784: In how many ways can 7 boys be seated in a row so that 3 boys are always seated together. \n" ); document.write( "
Algebra.Com's Answer #764701 by ikleyn(52787)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "In how many ways can 7 boys be seated in a row so that 3 \n" ); document.write( "~~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " Please pay attention on how I edited your post to make sense.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " It is how a Math problem SHOULD BE.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "You actually consider permutations of (7-3+1) = 5 objects \"at the upper level\" (thinking about these 3 particular boys as one object) \r\n" ); document.write( "\r\n" ); document.write( "and, in addition to it, you consider all permutations of these 3 particular boys \"at the bottom level\".\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "These permutations are independent, so you have, in all\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " 5!*3! = (1*2*3*4*5)*(1*2*3) = 120*6 = 720 permutations. ANSWER\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "----------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "On Permutations, see introductory lessons \r \n" ); document.write( "\n" ); document.write( " - Introduction to Permutations\r \n" ); document.write( "\n" ); document.write( " - PROOF of the formula on the number of Permutations\r \n" ); document.write( "\n" ); document.write( " - Problems on Permutations\r \n" ); document.write( "\n" ); document.write( " - Arranging elements of sets containing indistinguishable elements \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " - OVERVIEW of lessons on Permutations and Combinations\r \n" ); document.write( "\n" ); document.write( "in this site.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Also, you have this free of charge online textbook in ALGEBRA-II in this site\r \n" ); document.write( "\n" ); document.write( " - ALGEBRA-II - YOUR ONLINE TEXTBOOK.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The referred lessons are the part of this online textbook under the topic \"Combinatorics: Combinations and permutations\". \r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Save the link to this textbook together with its description\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Free of charge online textbook in ALGEBRA-II \n" ); document.write( "https://www.algebra.com/algebra/homework/complex/ALGEBRA-II-YOUR-ONLINE-TEXTBOOK.lesson\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "into your archive and use when it is needed.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |