document.write( "Question 1143563: Find the rule for the mapping if R maps unto A
\n" ); document.write( "2 3 4 5
\n" ); document.write( "| | | |
\n" ); document.write( "1 3 6 10.
\n" ); document.write( "
\n" ); document.write( "Nb.R>1 and is a natural number. Thanks
\n" ); document.write( "

Algebra.Com's Answer #764440 by ikleyn(52810)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "The rule  f(n) = \"%28n%2A%28n-1%29%29%2F2\"   pointed by the tutor @greenestamps, is not a unique rule for this map.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "There are INFINITELY MANY other rules that provide the same map.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "For example, all the polynomials\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    F(n) = \"%28n%2A%28n-1%29%29%2F2\" + m*(n-2)*(n-3)*(n-4)*(n-5)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "with any constant real (or integer) coefficient \"m\" produce the same map.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Notice that the added polynomial  m*(n-2)*(n-3)*(n-4)*(n-5)  is equal to zero at all the points  {2, 3, 4, 5} on the number line.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );