document.write( "Question 1143241: If angle C = 70 degrees, angle A = 45 degrees and AB = 40 m. What is the length of the median drawn from the vertex A to side BC. Thank you. \n" ); document.write( "
Algebra.Com's Answer #764047 by rothauserc(4718)    You can put this solution on YOUR website! let median(BC) be the length of the median drawn from angle A to side BC, then \n" ); document.write( ": \n" ); document.write( "BC = (1/2) * square root(2 * AB^2 + 2 * AC^2 - BC^2) \n" ); document.write( ": \n" ); document.write( "Use the Law of Sines to find the length of the other two sides \n" ); document.write( ": \n" ); document.write( "Note angle A = 45 degrees, angle C = 70 degrees, then angle B = 65 degrees \n" ); document.write( ": \n" ); document.write( "The problem states that AB = 40m, then \n" ); document.write( ": \n" ); document.write( "40/sin(70) = BC/sin(45) \n" ); document.write( ": \n" ); document.write( "BC = (sin(45) * 40)/sin(70) = 30.0995 \n" ); document.write( ": \n" ); document.write( "40/sin(70) = AC/sin(65) \n" ); document.write( ": \n" ); document.write( "AC = (sin(65) * 40)/sin(70) = 38.5789 \n" ); document.write( ": \n" ); document.write( "median(BC) = (1/2) * square root(2 * (40)^2 + 2 * (38.5789)^2 - (30.0995)^2) = 36.2997 \n" ); document.write( ": \n" ); document.write( "*************************************************** \n" ); document.write( "The length of the median(BC) is approximately 36.3m \n" ); document.write( "*************************************************** \n" ); document.write( ": \n" ); document.write( "  |