document.write( "Question 1142709: Calculus Optimization Question\r
\n" );
document.write( "\n" );
document.write( "An open box is to be made from a 16 cm by 30 cm piece of cardboard by cutting out a square in each of the corners. The sides are then folded up to create the box. What are the optimum dimensions of the squares that should be cut out in order to maximize the volume? \n" );
document.write( "
Algebra.Com's Answer #763429 by ikleyn(52798)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( " \r\n" ); document.write( "When the four squares at the corners are cut and the sides folded up, the base of the open box has \r\n" ); document.write( "dimensions (16-2x) cm and (30-2x) cm, while its height is x cm.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "So, the volume of the open box is\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " V(x) = x*(16-2x)*(30-2x)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " V(x) = x*(4x^2 - 92x + 480) = 4x^3 - 92x^2 + 480x.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "To find the maximum volume, first take the derivative of the volume over x and then equate it to zero:\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " V'(x) = 12x^2 - 184x + 480 = 0.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Simplify the equation\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " 3x^2 - 46x + 120 = 0.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Find the roots using the quadratic formula\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |