document.write( "Question 1142711: Calculus Optimization\r
\n" ); document.write( "\n" ); document.write( "A closed cylindrical can is to be constructed so that it has a volume of 1 liter (1000 cm3). What are the dimensions that should be used to minimize the amount of material needed to manufacture the can?
\n" ); document.write( "

Algebra.Com's Answer #763425 by ikleyn(52776)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "As you know, the volume of a cylinder is \r\n" );
document.write( "\r\n" );
document.write( "    V = \"pi%2Ar%5E2%2Ah\", \r\n" );
document.write( "\r\n" );
document.write( "where pi = 3.14, r is the radius and h is the height.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "In your case the volume is fixed:\r\n" );
document.write( "\r\n" );
document.write( "    \"pi%2Ar%5E2%2Ah\" = 1000 cubic centimeters.                   (1)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The surface area of a cylinder is \r\n" );
document.write( "\r\n" );
document.write( "    S = \"2pi%2Ar%2Ah\" + \"2pi%2Ar%5E2\",                               (2)\r\n" );
document.write( "\r\n" );
document.write( "and they ask you to find minimum of (2) under the restriction (1).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "You can rewrite the formula (2) in the form\r\n" );
document.write( "\r\n" );
document.write( "    S(r) = \"%282%2Api%2Ar%5E2%2Ah%29%2Fr\" + \"2pi%2Ar%5E2\".                         (3)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "In formula (3), replace  \"pi%2Ar%5E2%2Ah\"  by  1000, based on (1). You will get\r\n" );
document.write( "\r\n" );
document.write( "    S(r) = \"%282%2A1000%29%2Fr\" + \"2pi%2Ar%5E2\" = \"2000%2Fr\" + \"2pi%2Ar%5E2\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The plot below shows the function S(r) = \"2000%2Fr\" + \"2pi%2Ar%5E2\", and you can clearly see that it has the minimum.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "        Plot y = \"2000%2Fr\" + \"2%2A3.14%2Ar%5E2\"\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "To find the minimum, use Calculus: differentiate the function to get\r\n" );
document.write( "\r\n" );
document.write( "S'(r) = \"-2000%2Fr%5E2\" + \"4pi%2Ar\" = \"%28-2000+%2B+4pi%2Ar%5E3%29%2Fr%5E2\"\r\n" );
document.write( "\r\n" );
document.write( "and equate it to zero.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "S'(r) = 0   leads you to equation  \"4pi%2Ar%5E3\" = \"2000\",   which gives \r\n" );
document.write( "\r\n" );
document.write( "r = \"root%283%2C500%2Fpi%29\" = \"root%283%2C500%2F3.14%29\" = 5.42 cm (approximately).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Answer.  r = 5.42 cm, h = \"1000%2F%283.14%2A5.42%5E2%29\" = 10.84 cm  give the minimum of the surface area.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );