I'll only do one. I'll do (v)\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Get terms in x² and x together. Since there is no term in y, write y² as\r\n" );
document.write( "(y-0)² \r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Factor the coefficient of x² out of the x² and the x terms.\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Add and subtract 1 inside the first parentheses:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Factor the first three terms inside the first parentheses:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Distribute the 4 into the big parentheses, removing the big parentheses,\r\n" );
document.write( "leaving the smaller parentheses intact:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Add 4 to both sides\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Get 1 on the right side by dividing every term by 100\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Simplify to get in standard form:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Since x comes first, the hyperbola opens left and right.\r\n" );
document.write( "\r\n" );
document.write( "Compare to equation
\r\n" );
document.write( "\r\n" );
document.write( "a² = 25, so a = 5; b² = 4, so b = 2\r\n" );
document.write( "\r\n" );
document.write( "Center = (h,k) = (1,0), semi-transverse axis = a = 5,\r\n" );
document.write( "semi-conjugate axis = b = 2 \r\n" );
document.write( "\r\n" );
document.write( "Draw defining rectangle with center (h,k) = (1,0) with horizontal dimension\r\n" );
document.write( "equal to the entire transverse axis, or 2a = 2(5) = 10 units and vertical\r\n" );
document.write( "dimension equal to the the entire conjugate axis, or 2b = 2(2) = 4.\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Draw and extend the diagonals of the defining rectangle. They are the\r\n" );
document.write( "asymptotes.\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Now we can sketch in the hyperbola.\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "The vertices are the midpoints of the left and right sides of the defining\r\n" );
document.write( "rectangle, (-4,0) and (6,0).\r\n" );
document.write( "\r\n" );
document.write( "We calculate the foci, by using the Pythagorean relationship for all\r\n" );
document.write( "hyperbolas, which is c²=a²+b², where c is the distance from the center to\r\n" );
document.write( "the foci.\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
, approximately\r\n" );
document.write( "\r\n" );
document.write( "The word \"foci\" is the plural of the word \"focus\".\r\n" );
document.write( "\r\n" );
document.write( "The left focus is c units left of the center (1,0) or
\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The right focus is c units right of the center (1,0) or
\r\n" );
document.write( "\r\n" );
document.write( "They are the two black dots drawn below:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "To find the equations of the asymptotes, they are the lines that go:\r\n" );
document.write( "\r\n" );
document.write( "(1) through the center (1,0) and the upper right corner of the defining\r\n" );
document.write( "rectangle (6,2), which has slope 2/5, which is b/a, so the equation is\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "(2) through the center (1,0) and the lower right corner of the defining\r\n" );
document.write( "rectangle (6,-2), which has slope -2/5, which is -b/a, so the equation is\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" );
document.write( "