document.write( "Question 1141944: Solve the linear programming problem by the method of corners.\r
\n" );
document.write( "\n" );
document.write( "Find the minimum and maximum of P = 5x + 4y subject to
\n" );
document.write( "3x + 5y ≥ 20
\n" );
document.write( "3x + y ≤ 16
\n" );
document.write( "−2x + y ≤ 2
\n" );
document.write( "x ≥ 0, y ≥ 0.
\n" );
document.write( "The minimum is P =
\n" );
document.write( " at
\n" );
document.write( "(x, y) = \r
\n" );
document.write( "\n" );
document.write( "
\n" );
document.write( " \r
\n" );
document.write( "\n" );
document.write( ".\r
\n" );
document.write( "\n" );
document.write( "The maximum is P =
\n" );
document.write( " at
\n" );
document.write( "(x, y) = \r
\n" );
document.write( "\n" );
document.write( "
\n" );
document.write( " \r
\n" );
document.write( "\n" );
document.write( ". \n" );
document.write( "
Algebra.Com's Answer #762600 by math_helper(2461)![]() ![]() You can put this solution on YOUR website! When you graph the three inequalities, \n" ); document.write( "3x + 5y ≥ 20 \n" ); document.write( "3x + y ≤ 16 \n" ); document.write( "−2x + y ≤ 2\r \n" ); document.write( "\n" ); document.write( "You will get a feasibility region in the shape of a triangle (the triangle is located in Q1 so x>=0 and y>=0 hold). The corners of the triangle are at: \n" ); document.write( " (2.8,7.6) \n" ); document.write( " (5,1) \n" ); document.write( " (0.769,3.538)\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |