Algebra.Com's Answer #761900 by Edwin McCravy(20060)  You can put this solution on YOUR website! Find an equation for the hyperbola with C(2,4), foci F1(2,1) and F2(2,7), and \n" );
document.write( "vertices V1(2,6) and V2(2,2)\r\n" );
document.write( "\r\n" );
document.write( "We plot those points:\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "It's a \"vertical\" hyperbola, opening up and down, like this: \r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "so its equation is \r\n" );
document.write( "of the form:\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "The center (h,k) is C(2,4) so h=2 and k=4, so, substituting:\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "\"a\" is the distance from the center to the vertex.\r\n" );
document.write( "The distance from C(2,4) to V1(2,6) is 2 units and\r\n" );
document.write( "the distance from C(2,4) to V2(2,2) is also 2 units,\r\n" );
document.write( "so a=2. So substituting:\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "\"c\" is the distance from the center to the focus.\r\n" );
document.write( "The distance from C(2,4) to F1(2,1) is 3 units and\r\n" );
document.write( "the distance from C(2,4) to F2(2,7) is also 3 units,\r\n" );
document.write( "so c=3. So substituting:\r\n" );
document.write( "\r\n" );
document.write( "We must calculate b using the Pythagorean relation for hyperbolas:\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( " \r\n" );
document.write( " \r\n" );
document.write( " \r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "Substituting b²=5\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "Edwin \n" );
document.write( " |