document.write( "Question 1141352: integrate sec^2x dx \n" ); document.write( "
Algebra.Com's Answer #761897 by rothauserc(4718)\"\" \"About 
You can put this solution on YOUR website!
integral of sec^2 (x) dx = integral of 1/cos^2 (x) dx =
\n" ); document.write( ":
\n" ); document.write( "((sin^2 (x) + cos^2 (x))/cos^2 (x)) dx
\n" ); document.write( ":
\n" ); document.write( "I used the identity sin^2 (x) + cos^2 (x) = 1
\n" ); document.write( ":
\n" ); document.write( "Note the derivative of sin(x)/cos(x) = ((cos(x) * cos(x) - sin(x) * -sin(x))/cos^2 (x)) dx = ((cos^2 (x)+ sin^2 (x))/cos^2 (x)) dx = (1/cos^2 (x)) dx = sec^2 (x) dx
\n" ); document.write( ":
\n" ); document.write( "let u = tan(x) = sin(x)/cos(x)
\n" ); document.write( ":
\n" ); document.write( "du = (1/cos^2 (x)) dx, then
\n" ); document.write( ":
\n" ); document.write( "******************************************************************
\n" ); document.write( "integral of sec^2 (x) dx = integral of u du = u = tan(x) +constant
\n" ); document.write( "******************************************************************
\n" ); document.write( ":
\n" ); document.write( "
\n" );