document.write( "Question 1140645: The 86-digit number 666...666 ( made entirely of sixes) is multiplied by the 85 digit-number 333...333 (made entirely of threes). How many times will the digit 7 appear in the product? \n" ); document.write( "
Algebra.Com's Answer #761204 by Edwin McCravy(20059)![]() ![]() You can put this solution on YOUR website! \r\n" ); document.write( "He misread the problem. The multiplier has ONE LESS digit than the multiplicand.\r\n" ); document.write( "So he should have\r\n" ); document.write( "\r\n" ); document.write( "66*3 = 198 2 digits times 1 digit --> 0 7\r\n" ); document.write( "666*33 = 21978 3 digits times 2 digits --> 1 7\r\n" ); document.write( "6666*333 = 2219778 4 digits times 3 digits --> 2 7's\r\n" ); document.write( "66666*3333 = 222197778 5 digits times 4 digits --> 3 7's\r\n" ); document.write( "666666*33333 = 22221977778 6 digits times 5 digits --> 4 7's\r\n" ); document.write( "\r\n" ); document.write( "So if the pattern continues, then it should be\r\n" ); document.write( "\r\n" ); document.write( "86 digits times 85 digits --> 84 7's\r\n" ); document.write( "\r\n" ); document.write( "Edwin\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |