1. Factor:
\r\n" );
document.write( "\r\n" );
document.write( "All potential roots or zeros are ± the factors of 6, which are ±1,±2,±3,±6\r\n" );
document.write( "\r\n" );
document.write( "We try the easiest one first, which is 1 with synthetic division, We are\r\n" );
document.write( "dividing by x-1\r\n" );
document.write( "\r\n" );
document.write( "1 | 1 -5 5 5 -6\r\n" );
document.write( " | 1 -4 1 6\r\n" );
document.write( " 1 -4 1 6 0\r\n" );
document.write( "\r\n" );
document.write( "Luckily that gave 0 remainder, telling us that 1 is a zero or root and that\r\n" );
document.write( "x-1 is a factor, So the first partial factorization using (x-1) and the bottom\r\n" );
document.write( "numbers is:\r\n" );
document.write( "\r\n" );
document.write( "(x-1)(x³-4x²+x+6)\r\n" );
document.write( "\r\n" );
document.write( "Next we factor x³-4x²+x+6\r\n" );
document.write( "\r\n" );
document.write( "All potential roots or zeros are again ± the factors of 6, which are ±1,±2,±3,±6\r\n" );
document.write( "\r\n" );
document.write( "We try the easiest one first again, which is 1, with synthetic division, We are\r\n" );
document.write( "again dividing by x-1\r\n" );
document.write( "\r\n" );
document.write( "1 | 1 -4 1 6\r\n" );
document.write( " | 1 -3 -2\r\n" );
document.write( " 1 -3 -2 4\r\n" );
document.write( "\r\n" );
document.write( "That does not give 0 remainder, so we try the next easiest one, which is -1,\r\n" );
document.write( "with synthetic division, We are dividing this time by x+1\r\n" );
document.write( "\r\n" );
document.write( "-1 | 1 -4 1 6\r\n" );
document.write( " | -1 5 -6\r\n" );
document.write( " 1 -5 6 0\r\n" );
document.write( "\r\n" );
document.write( "Luckily that gave 0 remainder, telling us that -1 is a zero or root and that\r\n" );
document.write( "x+1 is a factor, So the next partial factorization using (x+1) and the bottom\r\n" );
document.write( "numbers is:\r\n" );
document.write( "\r\n" );
document.write( "(x-1)(x+1)(x²-5x+6)\r\n" );
document.write( "\r\n" );
document.write( "Now we can complete the factorization without synthetic division:\r\n" );
document.write( "\r\n" );
document.write( "(x-1)(x+1)(x-2)(x-3)\r\n" );
document.write( "\r\n" );
document.write( "------------------------------------------\r\n" );
document.write( "\r\n" );
document.write( "Factor:
, we rewrite as
and\r\n" );
document.write( "then we can use the formula:
\r\n" );
document.write( "with A=x³ and B=y³\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "-------------------------------------------\r\n" );
document.write( "\r\n" );
document.write( "3.solve the equation
\r\n" );
document.write( "\r\n" );
document.write( "We have already factored the left side in the first problem, so\r\n" );
document.write( "we have:\r\n" );
document.write( "\r\n" );
document.write( "(x-1)(x+1)(x-2)(x-3) = 0\r\n" );
document.write( "\r\n" );
document.write( "We set each factor equal to 0:\r\n" );
document.write( "\r\n" );
document.write( "x-1=0; x+1=0; x-2=0; x-3=0\r\n" );
document.write( " x=1; x=-1; x=2; x=3\r\n" );
document.write( "\r\n" );
document.write( "Those are the four solutions.\r\n" );
document.write( "\r\n" );
document.write( "----------------------------------\r\n" );
document.write( "\r\n" );
document.write( "4.
\r\n" );
document.write( "\r\n" );
document.write( "Let ex = u, then e2x = u2\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( " 2u-1=0; u-3=0\r\n" );
document.write( " 2u=1 u=3\r\n" );
document.write( " u=
\r\n" );
document.write( "\r\n" );
document.write( "Substitute ex for u\r\n" );
document.write( "\r\n" );
document.write( "
;
\r\n" );
document.write( "
;
\r\n" );
document.write( "
;\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Here ln() means natural logarithm.\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" );
document.write( "