document.write( "Question 1140095: The angular elevation of a hill at a place P due south of it is 37 degrees and at a place Q due west of P the elevation is 23 degrees. If the distance from P to Q is 3km, find the height of the hill, to the nearest 10 metres \n" ); document.write( "
Algebra.Com's Answer #760627 by rothauserc(4718)\"\" \"About 
You can put this solution on YOUR website!
A due south bearing is 180 degrees
\n" ); document.write( ":
\n" ); document.write( "A due west bearing is 270 degrees
\n" ); document.write( ":
\n" ); document.write( "Let x be the height of the hill
\n" ); document.write( ":
\n" ); document.write( "we have two right triangles, let b1 and b2 be the bases of the two triangles
\n" ); document.write( ":
\n" ); document.write( "tan(37) = x/b1
\n" ); document.write( ":
\n" ); document.write( "b1 = x/tan(37)
\n" ); document.write( ":
\n" ); document.write( "similarly
\n" ); document.write( ":
\n" ); document.write( "b2 = x/tan(23)
\n" ); document.write( ":
\n" ); document.write( "we have a triangle with two sides equal to x/tan(37) and x/tan(23) and the angle between them is 270 - 180 = 90 degrees
\n" ); document.write( ":
\n" ); document.write( "ues Pythagorean Theorem
\n" ); document.write( ":
\n" ); document.write( "(x/tan(37))^2 + (x/tan(23))^2 = 3^2
\n" ); document.write( ":
\n" ); document.write( "x^2/0.7536^2 + x^2/0.4245^2 = 9
\n" ); document.write( ":
\n" ); document.write( "x^2/0.5679 + x^2/0.1802 = 9
\n" ); document.write( ":
\n" ); document.write( "9/x^2 = 1/0.5679 +1/0.1802 = 7.3103
\n" ); document.write( ":
\n" ); document.write( "x^2 = 9/7.3103 = 1.2311
\n" ); document.write( ":
\n" ); document.write( "*********************************************
\n" ); document.write( "x = 1.1095km = 1109.5m is approximately 1110m
\n" ); document.write( "*********************************************
\n" ); document.write( ":
\n" ); document.write( "
\n" );