document.write( "Question 1139816: A specialty entertainment store find that if it sells x life-size animatronic Bryce Harper statues per month, its profit (In dollars) will be P(x)=-60x^2+1800x-7500. \r
\n" ); document.write( "\n" ); document.write( "A. Find any break even points.
\n" ); document.write( "B. Find the number of items that need to be produced and sold in order to maximize the profit.
\n" ); document.write( "C. Find the maximum profit.
\n" ); document.write( "

Algebra.Com's Answer #760322 by josmiceli(19441)\"\" \"About 
You can put this solution on YOUR website!
At break-even point, \"+P%28x%29+=+0+\"
\n" ); document.write( "\"+-60x%5E2+%2B+1800x+-+7500+=+0+\"
\n" ); document.write( "\"+-x%5E2+%2B+30x+-+125+=+0+\"
\n" ); document.write( "\"+%28+-x+%2B+25+%29%2A%28+x+-+5+%29+=+0+\" ( by looking at it )
\n" ); document.write( "\"+x+=+25+\"
\n" ); document.write( "\"+x+=+5+\"
\n" ); document.write( "5 or 25 statues/mo give zero profit ( break even )
\n" ); document.write( "----------------------
\n" ); document.write( "The x-value of \"+P%5Bmax%5D+\" is:
\n" ); document.write( "\"+P%5Bmax%5D+=+-b%2F%282a%29+\"
\n" ); document.write( "\"+P%5Bmax%5D+=+-1800%2F%282%2A%28-60%29%29+\"
\n" ); document.write( "\"+P%5Bmax%5D+=+1800%2F120+\"
\n" ); document.write( "\"+P%5Bmax%5D+=+15+\"
\n" ); document.write( "15 item/mo will maximize profit
\n" ); document.write( "-----------------------------------------
\n" ); document.write( "\"+P%2815%29+=+-60%2A15%5E2+%2B+1800%2A15+-+7500+\"
\n" ); document.write( "\"+P%5Bmax%5D+=+-60%2A225+%2B+27000+-+7500+\"
\n" ); document.write( "\"+P%5Bmax%5D+=+-13500+%2B+27000+-+7500+\"
\n" ); document.write( "\"+P%5Bmax%5D+=+6000+\"
\n" ); document.write( "$6000 is max profit
\n" ); document.write( "-------------------------
\n" ); document.write( "Here's the plot:
\n" ); document.write( "\"+graph%28+400%2C+400%2C+-3%2C+30%2C+-700%2C+7000%2C+-60x%5E2+%2B+1800x+-+7500+%29+\"
\n" ); document.write( "
\n" );