document.write( "Question 104065: {1}find the sum of this geometric progression series 16+1\4+___as far as the 6th term????????{2}find the sum of this arithmetic progression 13.9+___+{-0.5}+{-2.1}+{-3.7} \n" ); document.write( "
Algebra.Com's Answer #75730 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! {1}find the sum of this geometric progression series 16+1\4+___as far as the 6th term????????{2} \n" ); document.write( "-------- \n" ); document.write( "a(1)=16 \n" ); document.write( "d= (1/4)-16 = (-63/4) \n" ); document.write( "--------- \n" ); document.write( "So a(6)= a(1)+5d \n" ); document.write( "a(6) = 16 +5(-63/4) = -62.75 \n" ); document.write( "----------- \n" ); document.write( "Then S(6) = (6/2)(a(1)+a(6)) \n" ); document.write( "S(6) = 3(16-62.75)= -140.25 \n" ); document.write( "==========\r \n" ); document.write( "\n" ); document.write( "find the sum of this arithmetic progression 13.9+___+{-0.5}+{-2.1}+{-3.7} \n" ); document.write( "a(1)=13.9 \n" ); document.write( "d=-1.6 \n" ); document.write( "---------- \n" ); document.write( "Determine the order of -3.7 \n" ); document.write( "a(n)=13.9+(n-1)(-1.6) \n" ); document.write( "-3.7=13.9-1.6n+1.6 \n" ); document.write( "n=12 \n" ); document.write( "so -3.7 is the 12th term of the series. \n" ); document.write( "------------ \n" ); document.write( "Add the 1st 12 terms: \n" ); document.write( "S(12)=(12/2)(13.9-3.7) \n" ); document.write( "S(12)=6(10.2) \n" ); document.write( "S(12) = 61.2 \n" ); document.write( "================ \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( " |