document.write( "Question 1138837: What is the units digit of 7^2019? \n" ); document.write( "
Algebra.Com's Answer #756625 by Edwin McCravy(20063) You can put this solution on YOUR website! What is the units digit of 7^2019? \n" ); document.write( " \r\n" ); document.write( "The units digit of 7 is 7\r\n" ); document.write( "The units digit of 7×7=49 is 9\r\n" ); document.write( "The units digit of 9×7=63 is 3\r\n" ); document.write( "The units digit of 3×7=21 is 1\r\n" ); document.write( "\r\n" ); document.write( "The units digit of 1×7=7 is 7 again. \r\n" ); document.write( "\r\n" ); document.write( "So the units digits of the\r\n" ); document.write( "powers of 7 go 7,9,3,1,7,9,3,1,7,9,3,1,...\r\n" ); document.write( "\r\n" ); document.write( "They go in groups of 4,\r\n" ); document.write( "\r\n" ); document.write( " 504\r\n" ); document.write( "4)2019\r\n" ); document.write( " 20\r\n" ); document.write( " 19\r\n" ); document.write( " 16\r\n" ); document.write( " 3\r\n" ); document.write( "\r\n" ); document.write( "The quotient is 504 and the remainder is 3. So the units digit of 72019 will \r\n" ); document.write( "be the 3rd in the 504th group of four 7,9,3,1, and so it will be 3.\r\n" ); document.write( "\r\n" ); document.write( "Edwin\n" ); document.write( " |