document.write( "Question 1138580: Find the sum of the series, if it converges. Otherwise, enter DNE.
\n" ); document.write( "sum from n to infinity of: 3/(n(n+2))
\n" ); document.write( "

Algebra.Com's Answer #756379 by ikleyn(52792)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "Find the sum of the series, if it converges. Otherwise, enter DNE.
\n" ); document.write( "sum from n to infinity of: 3/(n(n+2))
\n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~~\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "            The problem formulation,  as it is presented in the post,  is  INCORRECT.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "            The correct formulation,  after my editing,  is below:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "                Find the sum of the series   { sum over n from 1 to infinity of  \"3%2F%28n%28n%2B2%29%29\" }.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solution\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "Use the identity\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    \"3%2F%28n%2A%28n%2B2%29%29\" = \"3%2F2n\" - \"3%2F%282%2A%28n%2B2%29%29\"\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "which you can easily prove by writing the right hand side with the common denominator.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "It will give you\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    { sum from n to infinity of \"3%2F%28n%28n%2B2%29%29\" } = \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "       =   \"3%2F2\" - \"3%2F6\"  +\r\n" );
document.write( "\r\n" );
document.write( "         + \"3%2F4\" - \"3%2F8\"  +\r\n" );
document.write( "\r\n" );
document.write( "         + \"3%2F6\" - \"3%2F10\"  +\r\n" );
document.write( "\r\n" );
document.write( "         + \"3%2F8\" - \"3%2F12\"  +\r\n" );
document.write( "\r\n" );
document.write( "         + \"3%2F10\" - \"3%2F14\"  +\r\n" );
document.write( "\r\n" );
document.write( "         +  . . . and so on . . . \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "From this writing, yo can see that in the (infinite) sum  all the terms cancel each other, and only two very first terms survive.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "These terms are  \"3%2F2\" + \"3%2F4\",  so the series does converge and the sum from 1 to infinity is equal to \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    \"3%2F2\" + \"3%2F4\" = \"6%2F4\" + \"3%2F4\" = \"9%2F4\" = \"2\"\"1%2F4\" = 2.25.     ANSWER\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "CHECK.\r\n" );
document.write( "\r\n" );
document.write( "n       \"3%2F%28n%2A%28n%2B2%29%29\"   Sum\r\n" );
document.write( "                  of the terms\r\n" );
document.write( "                  in column 2\r\n" );
document.write( "\r\n" );
document.write( "1	1.0000	1.0000\r\n" );
document.write( "2	0.3750	1.3750\r\n" );
document.write( "3	0.2000	1.5750\r\n" );
document.write( "4	0.1250	1.7000\r\n" );
document.write( "5	0.0857	1.7857\r\n" );
document.write( "6	0.0625	1.8482\r\n" );
document.write( "7	0.0476	1.8958\r\n" );
document.write( "8	0.0375	1.9333\r\n" );
document.write( "9	0.0303	1.9636\r\n" );
document.write( "10	0.0250	1.9886\r\n" );
document.write( "11	0.0210	2.0096\r\n" );
document.write( "12	0.0179	2.0275\r\n" );
document.write( "13	0.0154	2.0429\r\n" );
document.write( "14	0.0134	2.0563\r\n" );
document.write( "15	0.0118	2.0680\r\n" );
document.write( "16	0.0104	2.0784\r\n" );
document.write( "17	0.0093	2.0877\r\n" );
document.write( "18	0.0083	2.0961\r\n" );
document.write( "19	0.0075	2.1036\r\n" );
document.write( "20	0.0068	2.1104\r\n" );
document.write( "21	0.0062	2.1166\r\n" );
document.write( "22	0.0057	2.1223\r\n" );
document.write( "23	0.0052	2.1275\r\n" );
document.write( "24	0.0048	2.1323\r\n" );
document.write( "25	0.0044	2.1368\r\n" );
document.write( "26	0.0041	2.1409\r\n" );
document.write( "27	0.0038	2.1447\r\n" );
document.write( "28	0.0036	2.1483\r\n" );
document.write( "29	0.0033	2.1516\r\n" );
document.write( "30	0.0031	2.1547\r\n" );
document.write( "31	0.0029	2.1577\r\n" );
document.write( "32	0.0028	2.1604\r\n" );
document.write( "33	0.0026	2.1630\r\n" );
document.write( "34	0.0025	2.1655\r\n" );
document.write( "35	0.0023	2.1678\r\n" );
document.write( "36	0.0022	2.1700\r\n" );
document.write( "37	0.0021	2.1721\r\n" );
document.write( "38	0.0020	2.1740\r\n" );
document.write( "39	0.0019	2.1759\r\n" );
document.write( "40	0.0018	2.1777\r\n" );
document.write( "41	0.0017	2.1794\r\n" );
document.write( "42	0.0016	2.1810\r\n" );
document.write( "43	0.0016	2.1826\r\n" );
document.write( "44	0.0015	2.1841\r\n" );
document.write( "45	0.0014	2.1855\r\n" );
document.write( "46	0.0014	2.1868\r\n" );
document.write( "47	0.0013	2.1881\r\n" );
document.write( "48	0.0013	2.1894\r\n" );
document.write( "49	0.0012	2.1906\r\n" );
document.write( "50	0.0012	2.1917\r\n" );
document.write( "51	0.0011	2.1929\r\n" );
document.write( "52	0.0011	2.1939\r\n" );
document.write( "53	0.0010	2.1949\r\n" );
document.write( "54	0.0010	2.1959\r\n" );
document.write( "55	0.0010	2.1969\r\n" );
document.write( "56	0.0009	2.1978\r\n" );
document.write( "57	0.0009	2.1987\r\n" );
document.write( "58	0.0009	2.1996\r\n" );
document.write( "59	0.0008	2.2004\r\n" );
document.write( "60	0.0008	2.2012\r\n" );
document.write( "61	0.0008	2.2020\r\n" );
document.write( "62	0.0008	2.2028\r\n" );
document.write( "63	0.0007	2.2035\r\n" );
document.write( "64	0.0007	2.2042\r\n" );
document.write( "65	0.0007	2.2049\r\n" );
document.write( "66	0.0007	2.2056\r\n" );
document.write( "67	0.0006	2.2062\r\n" );
document.write( "68	0.0006	2.2068\r\n" );
document.write( "69	0.0006	2.2074\r\n" );
document.write( "70	0.0006	2.2080\r\n" );
document.write( "71	0.0006	2.2086\r\n" );
document.write( "72	0.0006	2.2092\r\n" );
document.write( "73	0.0005	2.2097\r\n" );
document.write( "74	0.0005	2.2103\r\n" );
document.write( "75	0.0005	2.2108\r\n" );
document.write( "76	0.0005	2.2113\r\n" );
document.write( "77	0.0005	2.2118\r\n" );
document.write( "78	0.0005	2.2123\r\n" );
document.write( "79	0.0005	2.2127\r\n" );
document.write( "80	0.0005	2.2132\r\n" );
document.write( "81	0.0004	2.2136\r\n" );
document.write( "82	0.0004	2.2141\r\n" );
document.write( "83	0.0004	2.2145\r\n" );
document.write( "84	0.0004	2.2149\r\n" );
document.write( "85	0.0004	2.2153\r\n" );
document.write( "86	0.0004	2.2157\r\n" );
document.write( "87	0.0004	2.2161\r\n" );
document.write( "88	0.0004	2.2165\r\n" );
document.write( "89	0.0004	2.2168\r\n" );
document.write( "90	0.0004	2.2172\r\n" );
document.write( "91	0.0004	2.2176\r\n" );
document.write( "92	0.0003	2.2179\r\n" );
document.write( "93	0.0003	2.2183\r\n" );
document.write( "94	0.0003	2.2186\r\n" );
document.write( "95	0.0003	2.2189\r\n" );
document.write( "96	0.0003	2.2192\r\n" );
document.write( "97	0.0003	2.2195\r\n" );
document.write( "98	0.0003	2.2198\r\n" );
document.write( "99	0.0003	2.2201\r\n" );
document.write( "100	0.0003	2.2204\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "This trick,  which I used in my solution,  is very well known.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "See the lesson\r
\n" ); document.write( "\n" ); document.write( "    - Calculations with fractions\r
\n" ); document.write( "\n" ); document.write( "in this site.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );