document.write( "Question 1138467: Determine the number of ordered pairs of positive integers (a,b) such that a and b are both divisors of 1260 and a/b \n" ); document.write( "
Algebra.Com's Answer #756297 by greenestamps(13200)![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "The prime factorization of 1260 is 1260 = 2*2*3*3*5*7 \n" ); document.write( "One of the factors of 1260 is 20 = 2*2*5; 1260/20 = 63. \n" ); document.write( "If a=20, then b can be any number of the form 20n, where n is any factor of 63. \n" ); document.write( "63 = 3*3*7; the number of factors of 63 is (2+1)(1+1) = 3*2 = 6. \n" ); document.write( "So there are 6 ordered pairs of positive integers (20,b) for which 20 and b are both divisors of 1260 and a divides b: (20,20), (20,60), (20,140), (20,180), (20,420), and (20,1260). \n" ); document.write( "Perform a similar analysis for each value of a:\" \r\n" ); document.write( "\r\n" ); document.write( " +-------------------------------------------+\r\n" ); document.write( " | | | | number of |\r\n" ); document.write( " | | | | possible |\r\n" ); document.write( " | | | factors | values |\r\n" ); document.write( " | a | n=1260/a | of n | for b |\r\n" ); document.write( " +-------------------------------------------+\r\n" ); document.write( "\r\n" ); document.write( " 1 1260 2*2*3*3*5*7 3*3*2*2 = 36\r\n" ); document.write( " 2 630 2*3*3*5*7 2*3*2*2 = 24\r\n" ); document.write( " 3 420 2*2*3*5*7 3*2*2*2 = 24\r\n" ); document.write( " 4 315 3*3*5*7 3*2*2 = 12\r\n" ); document.write( " 5 252 2*2*3*3*7 3*3*2 = 18\r\n" ); document.write( " 6 210 2*3*5*7 2*2*2*2 = 16\r\n" ); document.write( " 7 180 2*2*3*3*5 3*3*2 = 18\r\n" ); document.write( " 9 140 2*2*5*7 3*2*2 = 18\r\n" ); document.write( " 10 126 2*3*3*7 2*3*2 = 12\r\n" ); document.write( " 12 105 3*5*7 2*2*2 = 8\r\n" ); document.write( " 14 90 2*3*3*5 2*3*2 = 12\r\n" ); document.write( " 15 84 2*2*3*7 3*2*2 = 12\r\n" ); document.write( " 18 70 2*5*7 2*2*2 = 8\r\n" ); document.write( " 20 63 3*3*7 3*2 = 6\r\n" ); document.write( " 21 60 2*2*3*5 3*2*2 = 12\r\n" ); document.write( " 28 45 3*3*5 3*2 = 6\r\n" ); document.write( " 30 42 2*3*7 2*2*2 = 8\r\n" ); document.write( " 35 36 2*2*3*3 3*3 = 9\r\n" ); document.write( " 36 35 5*7 2*2 = 4\r\n" ); document.write( " 42 30 2*3*5 2*2*2 = 8\r\n" ); document.write( " 45 28 2*2*7 3*2 = 6\r\n" ); document.write( " 60 21 3*7 2*2 = 4\r\n" ); document.write( " 63 20 2*2*5 3*2 = 6\r\n" ); document.write( " 70 18 2*3*3 2*3 = 6\r\n" ); document.write( " 84 15 3*5 2*2 = 4\r\n" ); document.write( " 90 14 2*7 2*2 = 4\r\n" ); document.write( " 105 12 2*2*3 3*2 = 6\r\n" ); document.write( " 126 10 2*5 2*2 = 4\r\n" ); document.write( " 140 9 3*3 3 = 3\r\n" ); document.write( " 180 7 7 2 = 2\r\n" ); document.write( " 210 6 2*3 2*2 = 4\r\n" ); document.write( " 252 5 5 2 = 2\r\n" ); document.write( " 315 4 2*2 3 = 3\r\n" ); document.write( " 420 3 3 2 = 2\r\n" ); document.write( " 630 2 2 2 = 2\r\n" ); document.write( " 1260 1 = 1\r\n" ); document.write( " ------------------\r\n" ); document.write( " total: 330 \n" ); document.write( "ANSWER: There are 330 ordered pairs (a,b) in which a and b are both divisors of 1260 and a divides b.\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |