document.write( "Question 1138077: Find the vertex, focus, directrix, and focal width of the parabola. choices below (5 points)
\n" ); document.write( "negative 1 divided by 16 times x squared = y
\n" ); document.write( "Vertex: (0, 0); Focus: (0, -4); Directrix: y = 4; Focal width: 16
\n" ); document.write( "
\n" ); document.write( "Vertex: (0, 0); Focus: (-8, 0); Directrix: x = 4; Focal width: 64
\n" ); document.write( "
\n" ); document.write( "Vertex: (0, 0); Focus: (0, 4); Directrix: y = -4; Focal width: 4
\n" ); document.write( "
\n" ); document.write( "Vertex: (0, 0); Focus: (0, -4); Directrix: y = 4; Focal width: 64
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #755999 by MathLover1(20850)\"\" \"About 
You can put this solution on YOUR website!
Find the vertex, focus, directrix, and focal width of the parabola. choices below \r
\n" ); document.write( "\n" ); document.write( "\"-%281%2F+16%29x%5E2+=+y\"\r
\n" ); document.write( "\n" ); document.write( "The standard form is \"%28x+-+h%29%5E2+=+4p+%28y+-+k%29\", where the focus is (\"h\",\"+k+%2B+p\") and the directrix is \"y+=+k+-+p\".\r
\n" ); document.write( "\n" ); document.write( "given:
\n" ); document.write( "\"-%281%2F+16%29x%5E2+=+y\"\r
\n" ); document.write( "\n" ); document.write( "\"x%5E2+=+%281%2F%281%2F-16%29%29y\"\r
\n" ); document.write( "\n" ); document.write( "\"x%5E2+=+-16y\"\r
\n" ); document.write( "\n" ); document.write( "=>\"h=0\",\"k=0\"=>the vertex at:(\"0\", \"0\") \r
\n" ); document.write( "\n" ); document.write( "\"+4p=-16\"=>\"p=-4\"\r
\n" ); document.write( "\n" ); document.write( "a focus at (\"h\", \"k+%2B+p\")=(\"0\", \"-4\") \r
\n" ); document.write( "\n" ); document.write( "a directrix at \"y+=+k-p\"=>\"y=0+-+%28-4%29=4\"\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "The focal width of a parabola is the length of a segment that is parallel to the directrix and passing through the focus of a parabola. The length of this segment is \"4p\" units, or four time the length from the focus to the vertex.\r
\n" ); document.write( "\n" ); document.write( "focal width:\"16\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "answer:Vertex: (0, 0); Focus: (0, -4); Directrix: y = 4; Focal width: 16\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );